Computational identification of novel natural inhibitors against triple mutant DNA gyrase A in fluoroquinolone-resistant Salmonella Typhimurium.

IF 2.3 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Biophysics Reports Pub Date : 2025-01-08 eCollection Date: 2025-03-01 DOI:10.1016/j.bbrep.2024.101901
Sree Haryini, George Priya Doss C
{"title":"Computational identification of novel natural inhibitors against triple mutant DNA gyrase A in fluoroquinolone-resistant <i>Salmonella</i> Typhimurium.","authors":"Sree Haryini, George Priya Doss C","doi":"10.1016/j.bbrep.2024.101901","DOIUrl":null,"url":null,"abstract":"<p><p>The rising resistance to fluoroquinolones in <i>Salmonella</i> Typhimurium poses a significant global health challenge. This computational research addresses the pressing need for new therapeutic drugs by utilizing various computational tools to identify potential natural compounds that can inhibit the triple mutant DNA gyrase subunit A enzyme, which is crucial in fluoroquinolone resistance. Initially, the three-dimensional structure of the wild-type DNA gyrase A protein was modeled using homology modeling, and followed by <i>in silico</i> mutagenesis to create the clinically relevant triple mutant (SER83PHE, ASP87GLY, ALA119SER) DNA gyrase A protein structure. The structural stability and integrity of the modeled protein were ensured through rigorous validation. Subsequently, a high-throughput virtual screening of a curated library of natural compounds was conducted to identify potential inhibitors against wild-type and triple-mutant proteins. The selected potent lead molecules comprehensively evaluated their physicochemical properties, ADME/T properties, and binding affinities via ADME/T assessment and molecular docking studies. The safest and most promising ligands were chosen for dynamics studies to analyze their dynamic behavior and protein stability before and after the binding of ligands. Our results showed that the natural compounds from the ChemDiv database, CID: 0407-0108, N039-0003, 1080-0568, and 0099-0261 have binding energies ranging from -4.32 to -5.69 kcal/mol and exhibit excellent physio-chemical properties, affinities, and are stable in their dynamic environments over 100 ns for both wild-type and triple mutant DNA gyrase A complexes. These compounds provide a promising alternative treatment for fluoroquinolone-resistant <i>Salmonella</i> Typhimurium infections.</p>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"41 ","pages":"101901"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764029/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbrep.2024.101901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rising resistance to fluoroquinolones in Salmonella Typhimurium poses a significant global health challenge. This computational research addresses the pressing need for new therapeutic drugs by utilizing various computational tools to identify potential natural compounds that can inhibit the triple mutant DNA gyrase subunit A enzyme, which is crucial in fluoroquinolone resistance. Initially, the three-dimensional structure of the wild-type DNA gyrase A protein was modeled using homology modeling, and followed by in silico mutagenesis to create the clinically relevant triple mutant (SER83PHE, ASP87GLY, ALA119SER) DNA gyrase A protein structure. The structural stability and integrity of the modeled protein were ensured through rigorous validation. Subsequently, a high-throughput virtual screening of a curated library of natural compounds was conducted to identify potential inhibitors against wild-type and triple-mutant proteins. The selected potent lead molecules comprehensively evaluated their physicochemical properties, ADME/T properties, and binding affinities via ADME/T assessment and molecular docking studies. The safest and most promising ligands were chosen for dynamics studies to analyze their dynamic behavior and protein stability before and after the binding of ligands. Our results showed that the natural compounds from the ChemDiv database, CID: 0407-0108, N039-0003, 1080-0568, and 0099-0261 have binding energies ranging from -4.32 to -5.69 kcal/mol and exhibit excellent physio-chemical properties, affinities, and are stable in their dynamic environments over 100 ns for both wild-type and triple mutant DNA gyrase A complexes. These compounds provide a promising alternative treatment for fluoroquinolone-resistant Salmonella Typhimurium infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
191
审稿时长
59 days
期刊介绍: Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.
期刊最新文献
Computational identification of novel natural inhibitors against triple mutant DNA gyrase A in fluoroquinolone-resistant Salmonella Typhimurium. Dopamine receptors and organ fibrosis. Elucidating the therapeutic potential of indazole derivative bindarit against K-ras receptor: An in-silico analysis using molecular dynamics exploration. The prognostic significance of epoxide hydrolases in colorectal cancer. Effect of β-catenin on hypoxia induced epithelial mesenchymal transition in HK-2 cells by regulating Brachyury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1