Identification of Ferroptosis-related Genes for Diabetic Nephropathy by Bioinformatics and Experimental Validation.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2025-01-24 DOI:10.2174/0113816128349101250102113613
Siyuan Song, Jiangyi Yu
{"title":"Identification of Ferroptosis-related Genes for Diabetic Nephropathy by Bioinformatics and Experimental Validation.","authors":"Siyuan Song, Jiangyi Yu","doi":"10.2174/0113816128349101250102113613","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The present study delves into the exploration of diagnostic biomarkers linked with ferroptosis in the context of diabetic nephropathy, unraveling their underlying molecular mechanisms.</p><p><strong>Methods: </strong>In this study, we retrieved datasets GSE96804 and GSE30529 as the training cohort, followed by screening for Differentially Expressed Genes (DEGs). By intersecting these DEGs with known ferroptosisrelated genes, we obtained the differentially expressed genes related to ferroptosis (DEFGs). Subsequently, Weighted Correlation Network Analysis (WGCNA) was carried out to identify key modules associated with Diabetic Nephropathy (DN), culminating in the identification of a significant gene. Enrichment analysis and Gene Set Enrichment Analysis (GSEA) were then carried out on the DEFGs and genes linked to the significant gene. To validate our findings, we employed cohorts GSE30528 and GSE43950, utilizing ROC curve analysis to assess diagnostic efficacy for DN, as measured by the area under the curve (AUC). Immune cell infiltration was analyzed and compared between groups using the CIBERSORT algorithm. Bayesian colocalization analysis was performed to examine the co-location of DEFGs and DN. Finally, to validate the hub genes identified, we conducted quantitative real-time polymerase chain reaction (qRT-PCR) experiments in vitro.</p><p><strong>Results: </strong>FUZ, GLI1, GLI2, GLI3, and DVL2 were identified as the hub genes. Functional enrichment analysis demonstrated that ferroptosis and immune response play an important role in DN. ROC analysis showed that the identified genes had good diagnostic efficiency in DN. The results of the immune infiltration analysis showed that there may be crosstalk between ferroptosis and immune cells in DN. Bayesian co-localization analysis revealed the genetic correlation between the hub genes and DN. The outcomes of the qRT-PCR analyses corroborated the reliability of the identified hub genes as robust molecular markers for targeted therapy in DN.</p><p><strong>Conclusion: </strong>The interplay between immune inflammatory reactions and ferroptosis emerges as a crucial pathogenic mechanism, offering novel insights into the molecular therapy of DN. Furthermore, the identification of FUZ, GLI1, GLI2, GLI3, and DVL2 as potential targets holds promise for future therapeutic interventions aimed at treating DN.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128349101250102113613","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The present study delves into the exploration of diagnostic biomarkers linked with ferroptosis in the context of diabetic nephropathy, unraveling their underlying molecular mechanisms.

Methods: In this study, we retrieved datasets GSE96804 and GSE30529 as the training cohort, followed by screening for Differentially Expressed Genes (DEGs). By intersecting these DEGs with known ferroptosisrelated genes, we obtained the differentially expressed genes related to ferroptosis (DEFGs). Subsequently, Weighted Correlation Network Analysis (WGCNA) was carried out to identify key modules associated with Diabetic Nephropathy (DN), culminating in the identification of a significant gene. Enrichment analysis and Gene Set Enrichment Analysis (GSEA) were then carried out on the DEFGs and genes linked to the significant gene. To validate our findings, we employed cohorts GSE30528 and GSE43950, utilizing ROC curve analysis to assess diagnostic efficacy for DN, as measured by the area under the curve (AUC). Immune cell infiltration was analyzed and compared between groups using the CIBERSORT algorithm. Bayesian colocalization analysis was performed to examine the co-location of DEFGs and DN. Finally, to validate the hub genes identified, we conducted quantitative real-time polymerase chain reaction (qRT-PCR) experiments in vitro.

Results: FUZ, GLI1, GLI2, GLI3, and DVL2 were identified as the hub genes. Functional enrichment analysis demonstrated that ferroptosis and immune response play an important role in DN. ROC analysis showed that the identified genes had good diagnostic efficiency in DN. The results of the immune infiltration analysis showed that there may be crosstalk between ferroptosis and immune cells in DN. Bayesian co-localization analysis revealed the genetic correlation between the hub genes and DN. The outcomes of the qRT-PCR analyses corroborated the reliability of the identified hub genes as robust molecular markers for targeted therapy in DN.

Conclusion: The interplay between immune inflammatory reactions and ferroptosis emerges as a crucial pathogenic mechanism, offering novel insights into the molecular therapy of DN. Furthermore, the identification of FUZ, GLI1, GLI2, GLI3, and DVL2 as potential targets holds promise for future therapeutic interventions aimed at treating DN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
An Overview of Microneedles as a Drug Delivery System. Cancer Drug Targeting: Molecular Mechanism, Approaches, and Regulatory Framework. Systems Pharmacology-based Drug Discovery and Active Mechanism of Ganoderma lucidum Triterpenoids for Type 2 Diabetes Mellitus by Integrating Network Pharmacology and Molecular Docking. Eprosartan Reduces Inflammation and Oxidative Stress in Ethanol-induced Hepatotoxicity. Advances in Machine Learning Models for Healthcare Applications: A Precise and Patient-Centric Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1