Eprosartan Reduces Inflammation and Oxidative Stress in Ethanol-induced Hepatotoxicity.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2025-02-12 DOI:10.2174/0113816128342059250122060526
Ali Taheri Mirghaed, Mahboubeh Mansourian, Soroor Abdzadeh, Mahdokht Azizi, Farzaneh Karimi, Hamid Behrouj, Gholamreza Daryabor, Rozina Abbasi Larki, Sadrollah Mehrabi, Mohammad Bagher Jahantab, Amir Hossein Doustimotlagh
{"title":"Eprosartan Reduces Inflammation and Oxidative Stress in Ethanol-induced Hepatotoxicity.","authors":"Ali Taheri Mirghaed, Mahboubeh Mansourian, Soroor Abdzadeh, Mahdokht Azizi, Farzaneh Karimi, Hamid Behrouj, Gholamreza Daryabor, Rozina Abbasi Larki, Sadrollah Mehrabi, Mohammad Bagher Jahantab, Amir Hossein Doustimotlagh","doi":"10.2174/0113816128342059250122060526","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Eprosartan is an effective blood pressure medication that blocks the Angiotensin Type 1 (AT1) receptor. The studies conducted on Eprosartan showed anti-oxidative stress effects and modulating inflammatory mechanisms. The current research is designed to clarify and examine the possible advantageous impacts of Eprosartan against chronic ethanol-induced hepatic damage.</p><p><strong>Method: </strong>Twenty-four male Sprague-Dawley rats were haphazardly separated into four groups. The control group received normal saline 1 g/kg for 35 days (group 1). The EtOH group received 7 g/kg of 40% ethanol orally for 35 days (group 2). The EtOH+ EP group was pretreated with 60 mg/kg of Eprosartan dissolved in normal saline orally and, after 60 minutes, received 7 g/kg of 40% ethanol orally for 35 days (group 3). The EP group received only Eprosartan 60 mg/kg dissolved in normal saline for 35 days (group 4). The levels of biochemical parameters, oxidative stress markers, pro-inflammatory cytokines, and histopathological staining were evaluated in serum and liver tissue. The interactive behavior of Eprosartan with Tumor Necrosis Factor-α (TNF-α) protein was also explained by molecular docking.</p><p><strong>Results: </strong>Pre-treatment with Eprosartan (60 mg/kg) notably diminished the elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and Gamma-Glutamyl Transferase (GGT) enzymes, total triglyceride, cholesterol, total bilirubin, and inflammatory cytokines including TNF-α, Interleukin-1β (IL-1β) and Interleukin-6 (IL-6) levels, which were induced by alcohol administration (P-value ≤ 0.05). In the Eprosartan pre-treated group, malondialdehyde and protein carbonyl content of liver tissue were remarkably diminished, as compared to the ethanol-induced rats. In addition, histopathological results approved the indicated finding. Molecular docking research gives insights into potential interactions of Eprosartan with TNF-α protein.</p><p><strong>Conclusion: </strong>Our results revealed that the pre-treatment with Eprosartan (60 mg/kg) preserves against chronic alcohol-induced hepatic damage.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128342059250122060526","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Eprosartan is an effective blood pressure medication that blocks the Angiotensin Type 1 (AT1) receptor. The studies conducted on Eprosartan showed anti-oxidative stress effects and modulating inflammatory mechanisms. The current research is designed to clarify and examine the possible advantageous impacts of Eprosartan against chronic ethanol-induced hepatic damage.

Method: Twenty-four male Sprague-Dawley rats were haphazardly separated into four groups. The control group received normal saline 1 g/kg for 35 days (group 1). The EtOH group received 7 g/kg of 40% ethanol orally for 35 days (group 2). The EtOH+ EP group was pretreated with 60 mg/kg of Eprosartan dissolved in normal saline orally and, after 60 minutes, received 7 g/kg of 40% ethanol orally for 35 days (group 3). The EP group received only Eprosartan 60 mg/kg dissolved in normal saline for 35 days (group 4). The levels of biochemical parameters, oxidative stress markers, pro-inflammatory cytokines, and histopathological staining were evaluated in serum and liver tissue. The interactive behavior of Eprosartan with Tumor Necrosis Factor-α (TNF-α) protein was also explained by molecular docking.

Results: Pre-treatment with Eprosartan (60 mg/kg) notably diminished the elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and Gamma-Glutamyl Transferase (GGT) enzymes, total triglyceride, cholesterol, total bilirubin, and inflammatory cytokines including TNF-α, Interleukin-1β (IL-1β) and Interleukin-6 (IL-6) levels, which were induced by alcohol administration (P-value ≤ 0.05). In the Eprosartan pre-treated group, malondialdehyde and protein carbonyl content of liver tissue were remarkably diminished, as compared to the ethanol-induced rats. In addition, histopathological results approved the indicated finding. Molecular docking research gives insights into potential interactions of Eprosartan with TNF-α protein.

Conclusion: Our results revealed that the pre-treatment with Eprosartan (60 mg/kg) preserves against chronic alcohol-induced hepatic damage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
Eprosartan Reduces Inflammation and Oxidative Stress in Ethanol-induced Hepatotoxicity. Biological Evaluation and Computational Modelling Studies on N-acyl Hydrazone and 2,5-Substituted 1,3,4-Oxadiazole Derivatives as Non-toxic Antimicrobial Agents. Inorganic Nanoparticles-based Drug Delivery Systems for Neurodegenerative Diseases Therapy. Potential New Treatments for Chronic Kidney Diseases: A Concise Review. Skin Aging: Insights into the Role of Fatty Acids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1