Type IV collagen derived non-collagenous domain α6 (IV) NC1 and its derivative fragments inhibit endothelial cell proliferation and attenuates in-vivo chorioallantoic membrane angiogenesis.
Aravind Setti, Akbar Pasha, Venkata Krishna Kanth Makani, Manika Pal Bhadra, Smita C Pawar
{"title":"Type IV collagen derived non-collagenous domain α6 (IV) NC1 and its derivative fragments inhibit endothelial cell proliferation and attenuates <i>in-vivo</i> chorioallantoic membrane angiogenesis.","authors":"Aravind Setti, Akbar Pasha, Venkata Krishna Kanth Makani, Manika Pal Bhadra, Smita C Pawar","doi":"10.1007/s10616-025-00709-7","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect. In the present study, full length α6(IV)NC1(Hexastatin) and its three subfragments α6S1(IV)NC1, α6S2(IV)NC1, and α6S3(IV)NC1 were validated for their pro-apoptotic and angio-inhibitory property. In order to construct the coding sequence of hexastatin and its three derivative partial peptide fragments were constructed with our proposed method, where the corresponding exons were amplified from the genomic DNA and then assembled together. Coding sequences were cloned and expressed using pLATE31 vector and recombinant proteins were purified with C-terminal His tag. The endogenous NC protein fragments of collagen IV were evaluated in vitro for their role in cytotoxicity on human umbilical vein endothelial cells (HUVECs). The results showed that the NC1 domain and its fragments inhibited the HUVECs cell proliferation, migration, invasion and induced apoptosis. The neovascularization inhibition was studied in in-vitro, via tube formation assay and in-vivo via the CAM Assay. The results showed that blood vessels and inter capillary network were inhibited in endothelial cells and also, in chick embryo treated with recombinant α6(IV)NC1 and its derivatives, except for α6S1(IV)NC1 and these endogenous protein inhibitors act as bio-therapeutics in inhibition of angiogenesis.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"47"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759748/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00709-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect. In the present study, full length α6(IV)NC1(Hexastatin) and its three subfragments α6S1(IV)NC1, α6S2(IV)NC1, and α6S3(IV)NC1 were validated for their pro-apoptotic and angio-inhibitory property. In order to construct the coding sequence of hexastatin and its three derivative partial peptide fragments were constructed with our proposed method, where the corresponding exons were amplified from the genomic DNA and then assembled together. Coding sequences were cloned and expressed using pLATE31 vector and recombinant proteins were purified with C-terminal His tag. The endogenous NC protein fragments of collagen IV were evaluated in vitro for their role in cytotoxicity on human umbilical vein endothelial cells (HUVECs). The results showed that the NC1 domain and its fragments inhibited the HUVECs cell proliferation, migration, invasion and induced apoptosis. The neovascularization inhibition was studied in in-vitro, via tube formation assay and in-vivo via the CAM Assay. The results showed that blood vessels and inter capillary network were inhibited in endothelial cells and also, in chick embryo treated with recombinant α6(IV)NC1 and its derivatives, except for α6S1(IV)NC1 and these endogenous protein inhibitors act as bio-therapeutics in inhibition of angiogenesis.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.