Bryana N Harris, Laura A Woo, R Noah Perry, Alexia M Wallace, Mete Civelek, Matthew J Wolf, Jeffrey J Saucerman
{"title":"Dynamic map illuminates Hippo-cMyc module crosstalk driving cardiomyocyte proliferation.","authors":"Bryana N Harris, Laura A Woo, R Noah Perry, Alexia M Wallace, Mete Civelek, Matthew J Wolf, Jeffrey J Saucerman","doi":"10.1242/dev.204397","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 74 of 81 (91.35%) independent experiments from the literature. The model predicts that in response to YAP activation, the Hippo module crosstalks to the growth factor module via PI3K and cMyc to drive cell cycle activity. This predicted YAP-cMyc axis is validated experimentally in rat CMs and further supported by YAP-stimulated cMyc open chromatin and mRNA in mouse hearts. This validated computational model predicts how individual regulators and modules coordinate to control CM proliferation.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204397","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 74 of 81 (91.35%) independent experiments from the literature. The model predicts that in response to YAP activation, the Hippo module crosstalks to the growth factor module via PI3K and cMyc to drive cell cycle activity. This predicted YAP-cMyc axis is validated experimentally in rat CMs and further supported by YAP-stimulated cMyc open chromatin and mRNA in mouse hearts. This validated computational model predicts how individual regulators and modules coordinate to control CM proliferation.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.