Predictive value and mechanism of lncRNA MANCR for pediatric severe pneumonia via miR-20a-5p / MAPK1 axis

IF 2.5 4区 医学 Q3 IMMUNOLOGY Immunobiology Pub Date : 2025-01-22 DOI:10.1016/j.imbio.2025.152871
Yuting Cai , Jiaxi Xie , Jinkai Yang
{"title":"Predictive value and mechanism of lncRNA MANCR for pediatric severe pneumonia via miR-20a-5p / MAPK1 axis","authors":"Yuting Cai ,&nbsp;Jiaxi Xie ,&nbsp;Jinkai Yang","doi":"10.1016/j.imbio.2025.152871","DOIUrl":null,"url":null,"abstract":"<div><div>Severe community-acquired pneumonia (SCAP) significantly threats the safety of children's lives. Long non-coding RNA (lncRNA) MANCR is overexpressed in lung adenocarcinoma (LUAD) tissue, promote the proliferation, invasion, and migration, decreased cell apoptosis of LUAD cells. This study aimed to detect lncRNA MANCR levels in pediatric SCAP, and explore the diagnostic and prognostic significance of MANCR in pediatric SCAP. The mechanism of MANCR was examined in a lipopolysaccharide (LPS)-induced cell model. Serum MANCR level was detected by RT-PCR in participants. The diagnostic and prognostic value of MANCR was analyzed via ROC and KM curves. LPS constructed the pneumonia cell mode. Cell viability and apoptosis were detected by CCK-8 and flow cytometry respectively. ELISA examined the concentration of inflammatory factors. Serum MANCR level was elevated in SCAP patients. High MANCR could predict SCAP from controls (AUC = 0.852, sensitivity = 0.727, specificity = 0.836). High MANCR level is a predictor for poor prognosis of pediatric SCAP (<em>P</em> &lt; 0.001, HR = 5.810, 95 %CI = 2.450–13.781). LPS inhibited cell viability and promoted apoptosis and inflammation of NCI-H1563 cells. Silence of MANCR could promote cell viability, inhibit the cell apoptosis and secretion of CRP, PCT, IL-6, IL-1β, and TNF-α via miR-20a-5p / MAPK1 axis in LPS-stimulated NCI-H1563 cells (<em>P</em> &lt; 0.05). High MANCR levels in pediatric SCAP patients could predict the occurrence and poor prognosis of SCAP. MANCR knockout could inhibit cell apoptosis and inflammatory factors, and enhance cell viability via miR-20a-5p / MAPK1 axis in LPS-stimulated NCI-H1563 cells.</div></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"230 2","pages":"Article 152871"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171298525000051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Severe community-acquired pneumonia (SCAP) significantly threats the safety of children's lives. Long non-coding RNA (lncRNA) MANCR is overexpressed in lung adenocarcinoma (LUAD) tissue, promote the proliferation, invasion, and migration, decreased cell apoptosis of LUAD cells. This study aimed to detect lncRNA MANCR levels in pediatric SCAP, and explore the diagnostic and prognostic significance of MANCR in pediatric SCAP. The mechanism of MANCR was examined in a lipopolysaccharide (LPS)-induced cell model. Serum MANCR level was detected by RT-PCR in participants. The diagnostic and prognostic value of MANCR was analyzed via ROC and KM curves. LPS constructed the pneumonia cell mode. Cell viability and apoptosis were detected by CCK-8 and flow cytometry respectively. ELISA examined the concentration of inflammatory factors. Serum MANCR level was elevated in SCAP patients. High MANCR could predict SCAP from controls (AUC = 0.852, sensitivity = 0.727, specificity = 0.836). High MANCR level is a predictor for poor prognosis of pediatric SCAP (P < 0.001, HR = 5.810, 95 %CI = 2.450–13.781). LPS inhibited cell viability and promoted apoptosis and inflammation of NCI-H1563 cells. Silence of MANCR could promote cell viability, inhibit the cell apoptosis and secretion of CRP, PCT, IL-6, IL-1β, and TNF-α via miR-20a-5p / MAPK1 axis in LPS-stimulated NCI-H1563 cells (P < 0.05). High MANCR levels in pediatric SCAP patients could predict the occurrence and poor prognosis of SCAP. MANCR knockout could inhibit cell apoptosis and inflammatory factors, and enhance cell viability via miR-20a-5p / MAPK1 axis in LPS-stimulated NCI-H1563 cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunobiology
Immunobiology 医学-免疫学
CiteScore
5.00
自引率
3.60%
发文量
108
审稿时长
55 days
期刊介绍: Immunobiology is a peer-reviewed journal that publishes highly innovative research approaches for a wide range of immunological subjects, including • Innate Immunity, • Adaptive Immunity, • Complement Biology, • Macrophage and Dendritic Cell Biology, • Parasite Immunology, • Tumour Immunology, • Clinical Immunology, • Immunogenetics, • Immunotherapy and • Immunopathology of infectious, allergic and autoimmune disease.
期刊最新文献
Unveiling the Role of Oligosaccharyltransferase STT3B in Colorectal Cancer Tissues: Clinical significance and Molecular Mechanisms Driving the Formation of Tertiary Lymphoid Structures Renqing Changjue alleviates sepsis-induced acute lung injury by regulating renin-angiotensin system and inhibiting inflammatory response CVB3 regulates Treg cell pyroptosis through the lncRNA XIST/miR-195-5p/caspase-1 molecular axis Preclinical models of immune checkpoint inhibitors-related interstitial pneumonia for anti-PD1 tumor immunotherapy Shared pyroptosis pathways and crosstalk genes underpin inflammatory links between periodontitis and atherosclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1