Shared pyroptosis pathways and crosstalk genes underpin inflammatory links between periodontitis and atherosclerosis

IF 2.5 4区 医学 Q3 IMMUNOLOGY Immunobiology Pub Date : 2025-02-13 DOI:10.1016/j.imbio.2025.152880
Pinxin Zhan, Zhiying Feng, Xinqi Huang, Haoyang Xu, Shijun Xu, Shan Wang
{"title":"Shared pyroptosis pathways and crosstalk genes underpin inflammatory links between periodontitis and atherosclerosis","authors":"Pinxin Zhan,&nbsp;Zhiying Feng,&nbsp;Xinqi Huang,&nbsp;Haoyang Xu,&nbsp;Shijun Xu,&nbsp;Shan Wang","doi":"10.1016/j.imbio.2025.152880","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study aimed to identify crosstalk genes shared between periodontitis (PD) and atherosclerosis (AS) and to investigate their potential connections with pyroptosis-related genes. The goal was to uncover common regulatory mechanisms underlying these two inflammatory conditions.</div></div><div><h3>Methods</h3><div>Gene expression datasets for PD (GSE10334) and AS (GSE43292) were retrieved from public databases. Following batch effect correction and normalization, differential expression analysis was conducted using the limma package in R. Functional enrichment analysis was performed with the clusterProfiler package to identify key pathways, while heatmaps and pathway networks were constructed to visualize the relationships among pyroptosis genes and crosstalk genes. Weighted gene co-expression network analysis (WGCNA) was applied to identify critical modules, and the diagnostic potential of core genes was evaluated via receiver operating characteristic (ROC) analysis. Protein-protein interaction (PPI) networks were also constructed to explore molecular interactions.</div></div><div><h3>Results</h3><div>A total of 28 downregulated and 105 upregulated genes were identified in the PD dataset, while the AS dataset revealed 55 downregulated and 56 upregulated genes. Thirteen crosstalk genes were identified between the two datasets. Enrichment analyses of these crosstalk genes highlighted their involvement in inflammation- and immune-related pathways. The observed association of pyrototic phenotypes with PD and AS indicated significant overexpression of pyroptosis-related genes such as CASP1, NLRP3, and GSDMD, suggesting the participation of pyroptosis in the progression of disease. The WGCNA suggested that pyroptosis genes are closely relevant to immune responses and cell death processes. Data up to October 2023 were used to perform receiver operating characteristics (ROC) curves to confirm the diagnostic value of the enriched core genes, and all of them presented AUC values &gt;0.8, which meant that they were key genes with effective diagnostic power.</div></div><div><h3>Conclusion</h3><div>We report a novel study that identifies differentially expressed genes and pyroptosis-related pathways in PD and AS with shared inflammatory mechanisms. These results underscore the crucial role of pyroptosis in disease progression, suggesting its potential as a focus of diagnostic and therapeutic strategies. These findings provide insights for dissecting the molecular basis of inflammatory diseases.</div></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"230 2","pages":"Article 152880"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171298525000142","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

This study aimed to identify crosstalk genes shared between periodontitis (PD) and atherosclerosis (AS) and to investigate their potential connections with pyroptosis-related genes. The goal was to uncover common regulatory mechanisms underlying these two inflammatory conditions.

Methods

Gene expression datasets for PD (GSE10334) and AS (GSE43292) were retrieved from public databases. Following batch effect correction and normalization, differential expression analysis was conducted using the limma package in R. Functional enrichment analysis was performed with the clusterProfiler package to identify key pathways, while heatmaps and pathway networks were constructed to visualize the relationships among pyroptosis genes and crosstalk genes. Weighted gene co-expression network analysis (WGCNA) was applied to identify critical modules, and the diagnostic potential of core genes was evaluated via receiver operating characteristic (ROC) analysis. Protein-protein interaction (PPI) networks were also constructed to explore molecular interactions.

Results

A total of 28 downregulated and 105 upregulated genes were identified in the PD dataset, while the AS dataset revealed 55 downregulated and 56 upregulated genes. Thirteen crosstalk genes were identified between the two datasets. Enrichment analyses of these crosstalk genes highlighted their involvement in inflammation- and immune-related pathways. The observed association of pyrototic phenotypes with PD and AS indicated significant overexpression of pyroptosis-related genes such as CASP1, NLRP3, and GSDMD, suggesting the participation of pyroptosis in the progression of disease. The WGCNA suggested that pyroptosis genes are closely relevant to immune responses and cell death processes. Data up to October 2023 were used to perform receiver operating characteristics (ROC) curves to confirm the diagnostic value of the enriched core genes, and all of them presented AUC values >0.8, which meant that they were key genes with effective diagnostic power.

Conclusion

We report a novel study that identifies differentially expressed genes and pyroptosis-related pathways in PD and AS with shared inflammatory mechanisms. These results underscore the crucial role of pyroptosis in disease progression, suggesting its potential as a focus of diagnostic and therapeutic strategies. These findings provide insights for dissecting the molecular basis of inflammatory diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunobiology
Immunobiology 医学-免疫学
CiteScore
5.00
自引率
3.60%
发文量
108
审稿时长
55 days
期刊介绍: Immunobiology is a peer-reviewed journal that publishes highly innovative research approaches for a wide range of immunological subjects, including • Innate Immunity, • Adaptive Immunity, • Complement Biology, • Macrophage and Dendritic Cell Biology, • Parasite Immunology, • Tumour Immunology, • Clinical Immunology, • Immunogenetics, • Immunotherapy and • Immunopathology of infectious, allergic and autoimmune disease.
期刊最新文献
Preclinical models of immune checkpoint inhibitors-related interstitial pneumonia for anti-PD1 tumor immunotherapy Shared pyroptosis pathways and crosstalk genes underpin inflammatory links between periodontitis and atherosclerosis Expression of human superoxide dismutase (SOD) 1 G93A and chlorovirus ATCV-1 SOD increases the response of macrophages to inflammatory stimulants, including ATCV-1 major capsid protein glycans Regulation of FOXM1 by HDAC3 Inhibition Ameliorates Macrophage Endoplasmic Reticulum stress and Apoptosis in Mycobacterium tuberculosis Infection The Autoimmune Profiles in the Etiopathogenesis of Granulomatous Lobular Mastitis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1