Nastia Tsyplakova, Georgios Ismailos, Vangelis D Karalis
{"title":"Optimising pirfenidone dosage regimens in idiopathic pulmonary fibrosis: towards a guide for personalised treatment.","authors":"Nastia Tsyplakova, Georgios Ismailos, Vangelis D Karalis","doi":"10.1080/00498254.2025.2450440","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic Pulmonary Fibrosis (IPF) is a chronic respiratory disorder for which pirfenidone is the recommended first-line anti-fibrotic treatment. While pirfenidone has demonstrated efficacy in slowing the progression of IPF, its use is associated with several challenges and unresolved issues that impact patient outcomes. Pirfenidone administration can result in gastrointestinal side effects, photosensitivity reactions, and significant drug interactions, particularly in patients with hepatic impairment. For those who experience intolerable side effects, dose reductions or temporary discontinuations are frequently employed. However, there is limited data on the efficacy of reduced doses, creating uncertainty about the balance between tolerability and therapeutic benefit.The aim of this study is to evaluate the currently proposed dosage adjustments and to develop new dosage regimens tailored to the needs of patients. Simulations were conducted to explore pirfenidone pharmacokinetics under various challenging conditions, including dose titration, withdrawal, retitration, moderate and severe hepatic impairment, co-administration of moderate (e.g. omeprazole) and strong (e.g. smoking) inducers of the CYP1A2 enzyme, gastrointestinal adverse events, and photosensitivity reactions.Simulations led to specific recommendations for physicians regarding dosage regimens in each condition. The recommended dosage adjustments are designed to maintain concentrations within acceptable levels, ensuring both safe and effective treatment.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"1-12"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2025.2450440","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic respiratory disorder for which pirfenidone is the recommended first-line anti-fibrotic treatment. While pirfenidone has demonstrated efficacy in slowing the progression of IPF, its use is associated with several challenges and unresolved issues that impact patient outcomes. Pirfenidone administration can result in gastrointestinal side effects, photosensitivity reactions, and significant drug interactions, particularly in patients with hepatic impairment. For those who experience intolerable side effects, dose reductions or temporary discontinuations are frequently employed. However, there is limited data on the efficacy of reduced doses, creating uncertainty about the balance between tolerability and therapeutic benefit.The aim of this study is to evaluate the currently proposed dosage adjustments and to develop new dosage regimens tailored to the needs of patients. Simulations were conducted to explore pirfenidone pharmacokinetics under various challenging conditions, including dose titration, withdrawal, retitration, moderate and severe hepatic impairment, co-administration of moderate (e.g. omeprazole) and strong (e.g. smoking) inducers of the CYP1A2 enzyme, gastrointestinal adverse events, and photosensitivity reactions.Simulations led to specific recommendations for physicians regarding dosage regimens in each condition. The recommended dosage adjustments are designed to maintain concentrations within acceptable levels, ensuring both safe and effective treatment.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology