Bone marrow mesenchymal stem cells promote uterine healing by activating the PI3K/AKT pathway and modulating inflammation in rat models.

IF 3.6 3区 医学 Q3 CELL & TISSUE ENGINEERING World journal of stem cells Pub Date : 2025-01-26 DOI:10.4252/wjsc.v17.i1.98349
Jing Yang, Jun Yuan, Yan-Qing Wen, Li Wu, Jiu-Jiang Liao, Hong-Bo Qi
{"title":"Bone marrow mesenchymal stem cells promote uterine healing by activating the PI3K/AKT pathway and modulating inflammation in rat models.","authors":"Jing Yang, Jun Yuan, Yan-Qing Wen, Li Wu, Jiu-Jiang Liao, Hong-Bo Qi","doi":"10.4252/wjsc.v17.i1.98349","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Uterine injury can cause uterine scarring, leading to a series of complications that threaten women's health. Uterine healing is a complex process, and there are currently no effective treatments. Although our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) promote uterine damage repair, the underlying mechanisms remain unclear. However, exploring the specific regulatory roles of BMSCs in uterine injury treatment is crucial for further understanding their functions and enhancing therapeutic efficacy.</p><p><strong>Aim: </strong>To investigate the underlying mechanism by which BMSCs promote the process of uterine healing.</p><p><strong>Methods: </strong>In <i>in vivo</i> experiments, we established a model of full-thickness uterine injury and injected BMSCs into the uterine wound. Transcriptome sequencing was performed to determine the enrichment of differentially expressed genes at the wound site. In <i>in vitro</i> experiments, we isolated rat uterine smooth muscle cells (USMCs) and cocultured them with BMSCs to observe the interaction between BMSCs and USMCs in the microenvironment.</p><p><strong>Results: </strong>We found that the differentially expressed genes were mainly related to cell growth, tissue repair, and angiogenesis, while the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway was highly enriched. Quantitative reverse-transcription polymerase chain reaction was used to validate differentially expressed genes, and the results demonstrated that BMSCs can upregulate genes related to regeneration and downregulate genes related to inflammation. Coculturing BMSCs promoted the migration and proliferation of USMCs, and the USMC microenvironment promoted the myogenic differentiation of BMSCs. Finally, we validated the PI3K/AKT pathway in tissues and cells and showed that BMSCs activate the PI3K/AKT pathway to promote the regeneration of uterine smooth muscle both <i>in vivo</i> and <i>in vitro</i>.</p><p><strong>Conclusion: </strong>BMSCs upregulated uterine wound regeneration and anti-inflammatory factors and enhanced uterine smooth muscle proliferation through the PI3K/AKT pathway both <i>in vivo</i> and <i>in vitro</i>.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"17 1","pages":"98349"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v17.i1.98349","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Uterine injury can cause uterine scarring, leading to a series of complications that threaten women's health. Uterine healing is a complex process, and there are currently no effective treatments. Although our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) promote uterine damage repair, the underlying mechanisms remain unclear. However, exploring the specific regulatory roles of BMSCs in uterine injury treatment is crucial for further understanding their functions and enhancing therapeutic efficacy.

Aim: To investigate the underlying mechanism by which BMSCs promote the process of uterine healing.

Methods: In in vivo experiments, we established a model of full-thickness uterine injury and injected BMSCs into the uterine wound. Transcriptome sequencing was performed to determine the enrichment of differentially expressed genes at the wound site. In in vitro experiments, we isolated rat uterine smooth muscle cells (USMCs) and cocultured them with BMSCs to observe the interaction between BMSCs and USMCs in the microenvironment.

Results: We found that the differentially expressed genes were mainly related to cell growth, tissue repair, and angiogenesis, while the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway was highly enriched. Quantitative reverse-transcription polymerase chain reaction was used to validate differentially expressed genes, and the results demonstrated that BMSCs can upregulate genes related to regeneration and downregulate genes related to inflammation. Coculturing BMSCs promoted the migration and proliferation of USMCs, and the USMC microenvironment promoted the myogenic differentiation of BMSCs. Finally, we validated the PI3K/AKT pathway in tissues and cells and showed that BMSCs activate the PI3K/AKT pathway to promote the regeneration of uterine smooth muscle both in vivo and in vitro.

Conclusion: BMSCs upregulated uterine wound regeneration and anti-inflammatory factors and enhanced uterine smooth muscle proliferation through the PI3K/AKT pathway both in vivo and in vitro.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
World journal of stem cells
World journal of stem cells Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
7.80
自引率
4.90%
发文量
750
期刊介绍: The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.
期刊最新文献
Stromal vascular fraction: Mechanisms and application in reproductive disorders. Advances in human umbilical cord mesenchymal stem cells-derived extracellular vesicles and biomaterial assemblies for endometrial injury treatment. Bone marrow mesenchymal stem cells promote uterine healing by activating the PI3K/AKT pathway and modulating inflammation in rat models. Bridging bioengineering and nanotechnology: Bone marrow derived mesenchymal stem cell-exosome solutions for peripheral nerve injury. Extended protective effects of three dimensional cultured human mesenchymal stromal cells in a neuroinflammation model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1