Ok-Hyeon Kim, Hana Kang, Eun Seo Chang, Younghyun Lim, Young-Jin Seo, Hyun Jung Lee
{"title":"Extended protective effects of three dimensional cultured human mesenchymal stromal cells in a neuroinflammation model.","authors":"Ok-Hyeon Kim, Hana Kang, Eun Seo Chang, Younghyun Lim, Young-Jin Seo, Hyun Jung Lee","doi":"10.4252/wjsc.v17.i1.101485","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture.</p><p><strong>Aim: </strong>To enhance the efficiency and therapeutic efficacy of MSCs, an <i>in vivo</i>-like 3D culture condition was applied.</p><p><strong>Methods: </strong>MSCs were cultured on polystyrene (2D) or in a gellan gum-based 3D system. <i>In vitro</i>, prostaglandin-endoperoxide synthase 2, indoleamine-2,3-dioxygenase, heme oxygenase 1, and prostaglandin E synthase gene expression was quantified by quantitative real-time polymerase chain reaction. MSCs were incubated with lipopolysaccharide (LPS)-treated mouse splenocytes, and prostaglandin E2 and tumor necrosis factor-alpha levels were measured by enzyme linked immunosorbent assay. <i>In vivo</i>, LPS was injected into the lateral ventricle of mouse brain, and MSCs were administered intravenously the next day. Animals were sacrificed and analyzed on days 2 and 6.</p><p><strong>Results: </strong>Gellan gum polymer-based 3D culture significantly increased expression of octamer-binding transcription factor 4 and Nanog homeobox stemness markers in human MSCs compared to 2D culture. This 3D environment also heightened expression of cyclooxygenase-2 and heme-oxygenase 1, enzymes known for immunomodulatory functions, including production of prostaglandins and heme degradation, respectively. MSCs in 3D culture secreted more prostaglandin E2 and effectively suppressed tumor necrosis factor-alpha release from LPS-stimulated splenocytes and surpassed the efficiency of MSCs cultured in 2D. In a murine neuroinflammation model, intravenous injection of 3D-cultured MSCs significantly reduced ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein expression, mitigating chronic inflammation more effectively than 2D-cultured MSCs.</p><p><strong>Conclusion: </strong>The microenvironment established in 3D culture serves as an <i>in vivo</i> mimetic, enhancing the immunomodulatory function of MSCs. This suggests that engineered MSCs hold significant promise a potent tool for cell therapy.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"17 1","pages":"101485"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v17.i1.101485","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture.
Aim: To enhance the efficiency and therapeutic efficacy of MSCs, an in vivo-like 3D culture condition was applied.
Methods: MSCs were cultured on polystyrene (2D) or in a gellan gum-based 3D system. In vitro, prostaglandin-endoperoxide synthase 2, indoleamine-2,3-dioxygenase, heme oxygenase 1, and prostaglandin E synthase gene expression was quantified by quantitative real-time polymerase chain reaction. MSCs were incubated with lipopolysaccharide (LPS)-treated mouse splenocytes, and prostaglandin E2 and tumor necrosis factor-alpha levels were measured by enzyme linked immunosorbent assay. In vivo, LPS was injected into the lateral ventricle of mouse brain, and MSCs were administered intravenously the next day. Animals were sacrificed and analyzed on days 2 and 6.
Results: Gellan gum polymer-based 3D culture significantly increased expression of octamer-binding transcription factor 4 and Nanog homeobox stemness markers in human MSCs compared to 2D culture. This 3D environment also heightened expression of cyclooxygenase-2 and heme-oxygenase 1, enzymes known for immunomodulatory functions, including production of prostaglandins and heme degradation, respectively. MSCs in 3D culture secreted more prostaglandin E2 and effectively suppressed tumor necrosis factor-alpha release from LPS-stimulated splenocytes and surpassed the efficiency of MSCs cultured in 2D. In a murine neuroinflammation model, intravenous injection of 3D-cultured MSCs significantly reduced ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein expression, mitigating chronic inflammation more effectively than 2D-cultured MSCs.
Conclusion: The microenvironment established in 3D culture serves as an in vivo mimetic, enhancing the immunomodulatory function of MSCs. This suggests that engineered MSCs hold significant promise a potent tool for cell therapy.
期刊介绍:
The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.