Houman Parsaei , Enam Alhagh Charkhat Gorgich , Abdollsamad Eateghadi , Narjes Tavakoli , Marcus Ground , SeyedJamal Hosseini
{"title":"Acceleration of bone healing by a growth factor-releasing allo-hybrid graft","authors":"Houman Parsaei , Enam Alhagh Charkhat Gorgich , Abdollsamad Eateghadi , Narjes Tavakoli , Marcus Ground , SeyedJamal Hosseini","doi":"10.1016/j.tice.2025.102740","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time.</div></div><div><h3>Methods</h3><div>Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis. Twenty-four male rats were included in the study, and after creating calvarial defects, rats were divided into four groups: DBM implanted, allo-hybrid implanted, AMJ injection, and a negative control (NC). Bone regeneration was assessed using computed tomography (CT scan) and histological analysis at 1, 2, and 3 months after surgery.</div></div><div><h3>Results</h3><div>CT scan analysis clearly showed improved new bone growth in the allo-hybrid group compared to the NC group. Also, the Hounsfield unit of the allo-hybrid group (774.91 ± 47.8) after 90 days confirms CT scans. Histological staining revealed immature bone in allo-hybrid and DBM groups, along with the creation of a medullary cavity and bone marrow two months after surgery. Three months after surgery, the allo-hybrid group showed signs of new, mature bone, while no sign of healing could be seen in the NC group at any time points. Over a 90-day period, the allo-hybrid group recovered the bone defect area near 90 %. It is relatively twice as much as AMJ group.</div></div><div><h3>Conclusion</h3><div>Histological properties of bone defects and bone regeneration can both be improved by allo-hybrid grafts coated with AMJ.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"Article 102740"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625000205","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time.
Methods
Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis. Twenty-four male rats were included in the study, and after creating calvarial defects, rats were divided into four groups: DBM implanted, allo-hybrid implanted, AMJ injection, and a negative control (NC). Bone regeneration was assessed using computed tomography (CT scan) and histological analysis at 1, 2, and 3 months after surgery.
Results
CT scan analysis clearly showed improved new bone growth in the allo-hybrid group compared to the NC group. Also, the Hounsfield unit of the allo-hybrid group (774.91 ± 47.8) after 90 days confirms CT scans. Histological staining revealed immature bone in allo-hybrid and DBM groups, along with the creation of a medullary cavity and bone marrow two months after surgery. Three months after surgery, the allo-hybrid group showed signs of new, mature bone, while no sign of healing could be seen in the NC group at any time points. Over a 90-day period, the allo-hybrid group recovered the bone defect area near 90 %. It is relatively twice as much as AMJ group.
Conclusion
Histological properties of bone defects and bone regeneration can both be improved by allo-hybrid grafts coated with AMJ.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.