Tauroursodeoxycholic acid inhibits endothelial-mesenchymal transition in high glucose-treated human umbilical vein endothelial cells

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY Tissue & cell Pub Date : 2025-01-31 DOI:10.1016/j.tice.2025.102764
Yuan Liu , Tongxin Liu , Xinhao Li , Xiaoyue Qiu , Long Zheng , Qian Xu , Bin Li , Yanning Li
{"title":"Tauroursodeoxycholic acid inhibits endothelial-mesenchymal transition in high glucose-treated human umbilical vein endothelial cells","authors":"Yuan Liu ,&nbsp;Tongxin Liu ,&nbsp;Xinhao Li ,&nbsp;Xiaoyue Qiu ,&nbsp;Long Zheng ,&nbsp;Qian Xu ,&nbsp;Bin Li ,&nbsp;Yanning Li","doi":"10.1016/j.tice.2025.102764","DOIUrl":null,"url":null,"abstract":"<div><div>The high glucose-induced endothelial-mesenchymal transition (EndMT) may be the initial and underlying mechanism of diabetic vascular complications. Although tauroursodeoxycholic acid (TUDCA) plays various protective roles in diabetes and its complications, it’s unclear whether TUDCA inhibits the high glucose-induced EndMT. In this study, human umbilical vein endothelial cells (HUVECs) were treated with high glucose and intervened with TUDCA. The mRNA expression of fibroblast as well as endothelial markers, fibroblast specific protein 1 (FSP1), collagen I, CD31 and calcium adhesion protein 5, was detected. The protein content of FSP1 and CD31 was ascertained, with FSP1 distribution illustrated. The scratch assay was performed to evaluate the migratory ability of HUVECs. The protein content of TGF-β1 and Smad3, the distribution of Smad3 and the binding of Smad3 to the gene promoter of FSP1, were measured. The results firstly showed that TUDCA reversed the expression of EndMT-related genes in high glucose-treated HUVECs. Furthermore, TUDCA reduced FSP1 content with elevation in CD31, inhibited FSP1 distribution and attenuated morphological changes of high glucose-treated HUVECs. Meanwhile, TUDCA inhibited the high glucose-enhanced migratory ability of HUVECs. Mechanically, TUDCA prevented the binding of Smad3 to the gene promoter of FSP1 in high glucose-treated HUVECs, although it had little effect on the content of TGF-β1 and Smad3. In conclusion, TUDCA inhibited the high glucose-induced EndMT via preventing Smad3 from binding to the gene promoter of fibroblast markers, such as FSP1, in HUVECs.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"Article 102764"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625000448","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The high glucose-induced endothelial-mesenchymal transition (EndMT) may be the initial and underlying mechanism of diabetic vascular complications. Although tauroursodeoxycholic acid (TUDCA) plays various protective roles in diabetes and its complications, it’s unclear whether TUDCA inhibits the high glucose-induced EndMT. In this study, human umbilical vein endothelial cells (HUVECs) were treated with high glucose and intervened with TUDCA. The mRNA expression of fibroblast as well as endothelial markers, fibroblast specific protein 1 (FSP1), collagen I, CD31 and calcium adhesion protein 5, was detected. The protein content of FSP1 and CD31 was ascertained, with FSP1 distribution illustrated. The scratch assay was performed to evaluate the migratory ability of HUVECs. The protein content of TGF-β1 and Smad3, the distribution of Smad3 and the binding of Smad3 to the gene promoter of FSP1, were measured. The results firstly showed that TUDCA reversed the expression of EndMT-related genes in high glucose-treated HUVECs. Furthermore, TUDCA reduced FSP1 content with elevation in CD31, inhibited FSP1 distribution and attenuated morphological changes of high glucose-treated HUVECs. Meanwhile, TUDCA inhibited the high glucose-enhanced migratory ability of HUVECs. Mechanically, TUDCA prevented the binding of Smad3 to the gene promoter of FSP1 in high glucose-treated HUVECs, although it had little effect on the content of TGF-β1 and Smad3. In conclusion, TUDCA inhibited the high glucose-induced EndMT via preventing Smad3 from binding to the gene promoter of fibroblast markers, such as FSP1, in HUVECs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
期刊最新文献
Editorial Board Taxifolin mitigates cisplatin-induced testicular damage by reducing inflammation, oxidative stress, and apoptosis in mice. Tauroursodeoxycholic acid inhibits endothelial-mesenchymal transition in high glucose-treated human umbilical vein endothelial cells The role of mesenchymal stem cells‐derived from oral and teeth in regenerative and reconstructive medicine Molecular mechanisms of angiotensin type 2 receptor-mediated nitric oxide pathway in angiotensin II-induced vasorelaxation: Roles of potassium channels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1