The effect of muscle warm-up on voluntary and evoked force-time parameters: A systematic review and meta-analysis with meta-regression.

IF 9.7 1区 医学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Journal of Sport and Health Science Pub Date : 2025-01-25 DOI:10.1016/j.jshs.2025.101024
Cody J Wilson, João Pedro Nunes, Anthony J Blazevich
{"title":"The effect of muscle warm-up on voluntary and evoked force-time parameters: A systematic review and meta-analysis with meta-regression.","authors":"Cody J Wilson, João Pedro Nunes, Anthony J Blazevich","doi":"10.1016/j.jshs.2025.101024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While muscle contractility increases with muscle temperature, there is no consensus on the best warm-up protocol to use before resistance training or sports exercise due to the range of possible warm-up and testing combinations available. Therefore, the objective of the current study was to determine the effects of different warm-up types (active, exercise-based vs. passive) on muscle function tested using different activation methods (voluntary vs. evoked) and performance test criteria (maximum force vs. rate-dependent contractile properties), with consideration of warm-up task specificity (specific vs. non-specific), temperature measurement method (muscle vs. skin), baseline temperatures, and subject-specific variables (training status and sex).</p><p><strong>Methods: </strong>A systematic search was conducted in PubMed/MEDLINE, Scopus, Web of Science, Cochrane, Embase, and ProQuest. Random-effects meta-analyses and meta-regressions were used to compute the effect sizes (ES) and 95 % confidence intervals (95 %CI) to examine the effects of warm-up type, activation method, performance criterion, subject characteristics, and study design on temperature-related performance enhancement.</p><p><strong>Results: </strong>The search yielded 1272 articles, of which 33 met the inclusion criteria (n = 921). Increasing temperature positively affected both voluntary (3.7 % ± 1.8 %/°C, ES = 0.28 (95 %CI: 0.14, 0.41)) and evoked (3.2 % ± 1.5 %/°C, ES = 0.65 (95 %CI: 0.29, 1.00)) rate-dependent contractile properties (dynamic, fast-velocity force production, and rate of force development (RFD)) but not maximum force production (voluntary: -0.2 % ± 0.9 %/°C, ES = 0.08 (95 %CI: -0.05, 0.22); evoked: -0.1 % ± 0.8 %/°C, ES = -0.20 (95 %CI: -0.50, 0.10)). Active warm-up did not induce greater enhancements in rate-dependent contractile properties (p = 0.284), maximum force production (p = 0.723), or overall function (pooled, p = 0.093) than passive warm-up. Meta-regressions did not reveal a significant effect of study design, temperature measurement method, warm-up task specificity, training status, or sex on the effect of increasing temperature (p > 0.05).</p><p><strong>Conclusion: </strong>Increasing muscle temperature significantly enhances rate-dependent contractile function (RFD and muscle power) but not maximum force in both evoked and voluntary contractions. In contrast to expectation, no effects of warm-up modality (active vs. passive) or temperature measurement method (muscle vs. skin) were detected, although insufficient data prevented robust sub-group analyses.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"101024"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sport and Health Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jshs.2025.101024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: While muscle contractility increases with muscle temperature, there is no consensus on the best warm-up protocol to use before resistance training or sports exercise due to the range of possible warm-up and testing combinations available. Therefore, the objective of the current study was to determine the effects of different warm-up types (active, exercise-based vs. passive) on muscle function tested using different activation methods (voluntary vs. evoked) and performance test criteria (maximum force vs. rate-dependent contractile properties), with consideration of warm-up task specificity (specific vs. non-specific), temperature measurement method (muscle vs. skin), baseline temperatures, and subject-specific variables (training status and sex).

Methods: A systematic search was conducted in PubMed/MEDLINE, Scopus, Web of Science, Cochrane, Embase, and ProQuest. Random-effects meta-analyses and meta-regressions were used to compute the effect sizes (ES) and 95 % confidence intervals (95 %CI) to examine the effects of warm-up type, activation method, performance criterion, subject characteristics, and study design on temperature-related performance enhancement.

Results: The search yielded 1272 articles, of which 33 met the inclusion criteria (n = 921). Increasing temperature positively affected both voluntary (3.7 % ± 1.8 %/°C, ES = 0.28 (95 %CI: 0.14, 0.41)) and evoked (3.2 % ± 1.5 %/°C, ES = 0.65 (95 %CI: 0.29, 1.00)) rate-dependent contractile properties (dynamic, fast-velocity force production, and rate of force development (RFD)) but not maximum force production (voluntary: -0.2 % ± 0.9 %/°C, ES = 0.08 (95 %CI: -0.05, 0.22); evoked: -0.1 % ± 0.8 %/°C, ES = -0.20 (95 %CI: -0.50, 0.10)). Active warm-up did not induce greater enhancements in rate-dependent contractile properties (p = 0.284), maximum force production (p = 0.723), or overall function (pooled, p = 0.093) than passive warm-up. Meta-regressions did not reveal a significant effect of study design, temperature measurement method, warm-up task specificity, training status, or sex on the effect of increasing temperature (p > 0.05).

Conclusion: Increasing muscle temperature significantly enhances rate-dependent contractile function (RFD and muscle power) but not maximum force in both evoked and voluntary contractions. In contrast to expectation, no effects of warm-up modality (active vs. passive) or temperature measurement method (muscle vs. skin) were detected, although insufficient data prevented robust sub-group analyses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.30
自引率
1.70%
发文量
101
审稿时长
22 weeks
期刊介绍: The Journal of Sport and Health Science (JSHS) is an international, multidisciplinary journal that aims to advance the fields of sport, exercise, physical activity, and health sciences. Published by Elsevier B.V. on behalf of Shanghai University of Sport, JSHS is dedicated to promoting original and impactful research, as well as topical reviews, editorials, opinions, and commentary papers. With a focus on physical and mental health, injury and disease prevention, traditional Chinese exercise, and human performance, JSHS offers a platform for scholars and researchers to share their findings and contribute to the advancement of these fields. Our journal is peer-reviewed, ensuring that all published works meet the highest academic standards. Supported by a carefully selected international editorial board, JSHS upholds impeccable integrity and provides an efficient publication platform. We invite submissions from scholars and researchers worldwide, and we are committed to disseminating insightful and influential research in the field of sport and health science.
期刊最新文献
A primer on global molecular responses to exercise in skeletal muscle: Omics in focus. The effect of muscle warm-up on voluntary and evoked force-time parameters: A systematic review and meta-analysis with meta-regression. Erratum to "Biomechanics associated with tibial stress fracture in runners: A systematic review and meta-analysis" [J Sport Health Sci 12 (2023) 333-342]. Do compression garments enhance running performance? An updated systematic review and meta-analysis. Exercised gut microbiota improves vascular and metabolic abnormalities in sedentary diabetic mice through gut‒vascular connection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1