{"title":"Reducing off-target expression of mRNA therapeutics and vaccines in the liver with microRNA binding sites.","authors":"Brian J Parrett, Satoko Yamaoka, Michael A Barry","doi":"10.1016/j.omtm.2024.101402","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression. We inserted one to five miR-122 binding sites into the 5' or 3' untranslated regions (UTRs) of luciferase mRNAs and tested them in LNPs <i>in vitro</i> and <i>in vivo</i> via systemic intravenous and local intramuscular injections in mice. Our results showed no significant differences in de-targeting efficacy between mRNAs harboring one or multiple miR-122 binding sites or between those with 5' or 3' UTR placements. To test the impact of miR-122 binding sites on antibody response to a mRNA vaccine, Ebola virus matrix protein VP40 mRNAs were modified with or without miR-122 binding sites and injected in mice intramuscularly. This work reinforces the utility of miR-122 binding sites while providing a comparison of these sites to aid the future development of LNP-mRNA therapies for non-hepatic tissues.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 1","pages":"101402"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101402","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression. We inserted one to five miR-122 binding sites into the 5' or 3' untranslated regions (UTRs) of luciferase mRNAs and tested them in LNPs in vitro and in vivo via systemic intravenous and local intramuscular injections in mice. Our results showed no significant differences in de-targeting efficacy between mRNAs harboring one or multiple miR-122 binding sites or between those with 5' or 3' UTR placements. To test the impact of miR-122 binding sites on antibody response to a mRNA vaccine, Ebola virus matrix protein VP40 mRNAs were modified with or without miR-122 binding sites and injected in mice intramuscularly. This work reinforces the utility of miR-122 binding sites while providing a comparison of these sites to aid the future development of LNP-mRNA therapies for non-hepatic tissues.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.