C Jason Liang, Chongliang Luo, Henry R Kranzler, Jiang Bian, Yong Chen
{"title":"Communication-efficient federated learning of temporal effects on opioid use disorder with data from distributed research networks.","authors":"C Jason Liang, Chongliang Luo, Henry R Kranzler, Jiang Bian, Yong Chen","doi":"10.1093/jamia/ocae313","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a distributed algorithm to fit multi-center Cox regression models with time-varying coefficients to facilitate privacy-preserving data integration across multiple health systems.</p><p><strong>Materials and methods: </strong>The Cox model with time-varying coefficients relaxes the proportional hazards assumption of the usual Cox model and is particularly useful to model time-to-event outcomes. We proposed a One-shot Distributed Algorithm to fit multi-center Cox regression models with Time varying coefficients (ODACT). This algorithm constructed a surrogate likelihood function to approximate the Cox partial likelihood function, using patient-level data from a lead site and aggregated data from other sites. The performance of ODACT was demonstrated by simulation and a real-world study of opioid use disorder (OUD) using decentralized data from a large clinical research network across 5 sites with 69 163 subjects.</p><p><strong>Results: </strong>The ODACT method precisely estimated the time-varying effects over time. In the simulation study, ODACT always achieved estimation close to that of the pooled analysis, while the meta-estimator showed considerable amount of bias. In the OUD study, the bias of the estimated hazard ratios by ODACT are smaller than those of the meta-estimator for all 7 risk factors at almost all of the time points from 0 to 2.5 years. The greatest bias of the meta-estimator was for the effects of age ≥65 years, and smoking.</p><p><strong>Conclusion: </strong>ODACT is a privacy-preserving and communication-efficient method for analyzing multi-center time-to-event data which allows the covariates' effects to be time-varying. ODACT provides estimates close to the pooled estimator and substantially outperforms the meta-analysis estimator.</p><p><strong>Discussion: </strong>The proposed ODACT is a privacy-preserving distributed algorithm for fitting Cox models with time-varying coefficients. The limitations of ODACT include that privacy-preserving via aggregate data does rely on relatively large number of data at each individual site, and rigorous quantification of the risk of privacy leaks requires further investigation.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae313","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To develop a distributed algorithm to fit multi-center Cox regression models with time-varying coefficients to facilitate privacy-preserving data integration across multiple health systems.
Materials and methods: The Cox model with time-varying coefficients relaxes the proportional hazards assumption of the usual Cox model and is particularly useful to model time-to-event outcomes. We proposed a One-shot Distributed Algorithm to fit multi-center Cox regression models with Time varying coefficients (ODACT). This algorithm constructed a surrogate likelihood function to approximate the Cox partial likelihood function, using patient-level data from a lead site and aggregated data from other sites. The performance of ODACT was demonstrated by simulation and a real-world study of opioid use disorder (OUD) using decentralized data from a large clinical research network across 5 sites with 69 163 subjects.
Results: The ODACT method precisely estimated the time-varying effects over time. In the simulation study, ODACT always achieved estimation close to that of the pooled analysis, while the meta-estimator showed considerable amount of bias. In the OUD study, the bias of the estimated hazard ratios by ODACT are smaller than those of the meta-estimator for all 7 risk factors at almost all of the time points from 0 to 2.5 years. The greatest bias of the meta-estimator was for the effects of age ≥65 years, and smoking.
Conclusion: ODACT is a privacy-preserving and communication-efficient method for analyzing multi-center time-to-event data which allows the covariates' effects to be time-varying. ODACT provides estimates close to the pooled estimator and substantially outperforms the meta-analysis estimator.
Discussion: The proposed ODACT is a privacy-preserving distributed algorithm for fitting Cox models with time-varying coefficients. The limitations of ODACT include that privacy-preserving via aggregate data does rely on relatively large number of data at each individual site, and rigorous quantification of the risk of privacy leaks requires further investigation.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.