Metabolomics and network pharmacology approach to identify potential bioactive compounds from Trichoderma sp. against oral squamous cell carcinoma.

Young Ji Choi, Kandasamy Saravanakumar, Jae-Hyoung Joo, Bomi Nam, Yuna Park, Soyeon Lee, SeonJu Park, Zijun Li, Lulu Yao, Yunyeong Kim, Navabshan Irfan, Namki Cho
{"title":"Metabolomics and network pharmacology approach to identify potential bioactive compounds from Trichoderma sp. against oral squamous cell carcinoma.","authors":"Young Ji Choi, Kandasamy Saravanakumar, Jae-Hyoung Joo, Bomi Nam, Yuna Park, Soyeon Lee, SeonJu Park, Zijun Li, Lulu Yao, Yunyeong Kim, Navabshan Irfan, Namki Cho","doi":"10.1016/j.compbiolchem.2025.108348","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to profile metabolites from five Trichoderma strains and assess their cytotoxic and pharmacological activities, particularly targeting oral squamous cell carcinoma (OSCC). UHPLC-TOF-MS analysis revealed the presence of 25 compounds, including heptelidic acid, viridiol isomers, and sorbicillinol from the different Trichoderma extracts. Pharmacokinetic analysis showed moderate permeability and low interaction with P-glycoprotein, suggesting good drug absorption with minimal interference in cellular uptake. ADME-Tox analysis indicated limited inhibition of cytochrome P450 enzymes, low renal clearance, which are favorable for maintaining therapeutic levels. Toxicity predictions revealed some compounds with potential mutagenicity, but low hepatotoxicity and skin sensitization risks. Network pharmacology identified MAPK1 as a key target for oral cancer, and molecular docking and induced fit docking studies demonstrated strong binding affinities of Trichoderma metabolites, including stachyose and harzianol, to MAPK1. In addition, molecular dynamics (MD) simulations confirmed stable interactions. In vitro studies on NIH3T3 and YD-10B cells showed significant cytotoxicity, particularly with extracts CNU-05-001 (IC<sub>50</sub>:10.15 µg/mL) and CNU-02-009 (10.00 µg/mL) against YD-10B cells. These findings underscore the potential of Trichoderma metabolites in drug discovery, particularly for cancer therapies.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108348"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2025.108348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to profile metabolites from five Trichoderma strains and assess their cytotoxic and pharmacological activities, particularly targeting oral squamous cell carcinoma (OSCC). UHPLC-TOF-MS analysis revealed the presence of 25 compounds, including heptelidic acid, viridiol isomers, and sorbicillinol from the different Trichoderma extracts. Pharmacokinetic analysis showed moderate permeability and low interaction with P-glycoprotein, suggesting good drug absorption with minimal interference in cellular uptake. ADME-Tox analysis indicated limited inhibition of cytochrome P450 enzymes, low renal clearance, which are favorable for maintaining therapeutic levels. Toxicity predictions revealed some compounds with potential mutagenicity, but low hepatotoxicity and skin sensitization risks. Network pharmacology identified MAPK1 as a key target for oral cancer, and molecular docking and induced fit docking studies demonstrated strong binding affinities of Trichoderma metabolites, including stachyose and harzianol, to MAPK1. In addition, molecular dynamics (MD) simulations confirmed stable interactions. In vitro studies on NIH3T3 and YD-10B cells showed significant cytotoxicity, particularly with extracts CNU-05-001 (IC50:10.15 µg/mL) and CNU-02-009 (10.00 µg/mL) against YD-10B cells. These findings underscore the potential of Trichoderma metabolites in drug discovery, particularly for cancer therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning and molecular subtyping reveal the impact of diverse patterns of cell death on the prognosis and treatment of hepatocellular carcinoma. In silico analysis of novel Triacontafluoropentadec-1-ene as a sustainable replacement for dodecane in fisheries microplastics: Molecular docking, dynamics simulation and pharmacophore studies of acetylcholinesterase activity. Relationship between structural properties and biological activity of (-)-menthol and some menthyl esters. Deciphering chondrocyte diversity in diabetic osteoarthritis through single-cell transcriptomics. Predicting distant metastatic sites of cancer using perturbed correlations of miRNAs with competing endogenous RNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1