Samuel Owusu Achiaw, Neil Hawkins, Olivia Wu, John Mercer
{"title":"Assessing the Value of Further Investment in R&D Using Mixed Methods: A Case Study of Biosensor-Integrated Arteriovenous Grafts.","authors":"Samuel Owusu Achiaw, Neil Hawkins, Olivia Wu, John Mercer","doi":"10.3390/jmahp13010001","DOIUrl":null,"url":null,"abstract":"<p><p>This study illustrates the utility of a mixed-methods approach in assessing the value of an example novel technology-biosensor-integrated self-reporting arteriovenous grafts (smart AVGs). Currently in preclinical development, the device will detect arteriovenous graft stenosis (surveillance-only use case) and treat stenosis (interventional use case). The approach to value assessment adopted in this study was multifaceted, with one stage informing the next and comprised a stakeholder engagement with clinical experts to explore the device's clinical value, a cost-utility analysis (CUA) from a US Medicare perspective to estimate pricing headroom, and an investment model estimating risk-adjusted net present value analysis (rNPVs) to determine commercial viability. The stakeholder engagement suggested that it would currently be difficult to establish the current value of the surveillance-only use case due to the lack of well-established interventions for preclinical stenosis. Based on this, the CUA focused on the interventional use case and estimated economically justifiable prices at assumed effectiveness levels. Using these prices, rNPVs were estimated over a range of scenarios. This value assessment informs early decision-making on health technology R&D by identifying the conditions (including clinical study success, potential market size and penetration, market access strategies, and assumptions associated with CUA) under which investment may be considered attractive.</p>","PeriodicalId":73811,"journal":{"name":"Journal of market access & health policy","volume":"13 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of market access & health policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmahp13010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
This study illustrates the utility of a mixed-methods approach in assessing the value of an example novel technology-biosensor-integrated self-reporting arteriovenous grafts (smart AVGs). Currently in preclinical development, the device will detect arteriovenous graft stenosis (surveillance-only use case) and treat stenosis (interventional use case). The approach to value assessment adopted in this study was multifaceted, with one stage informing the next and comprised a stakeholder engagement with clinical experts to explore the device's clinical value, a cost-utility analysis (CUA) from a US Medicare perspective to estimate pricing headroom, and an investment model estimating risk-adjusted net present value analysis (rNPVs) to determine commercial viability. The stakeholder engagement suggested that it would currently be difficult to establish the current value of the surveillance-only use case due to the lack of well-established interventions for preclinical stenosis. Based on this, the CUA focused on the interventional use case and estimated economically justifiable prices at assumed effectiveness levels. Using these prices, rNPVs were estimated over a range of scenarios. This value assessment informs early decision-making on health technology R&D by identifying the conditions (including clinical study success, potential market size and penetration, market access strategies, and assumptions associated with CUA) under which investment may be considered attractive.