A novel cylindrical filtering-based greedy perimeter stateless routing scheme in flying ad hoc networks

IF 5.8 2区 计算机科学 Q1 TELECOMMUNICATIONS Vehicular Communications Pub Date : 2025-01-20 DOI:10.1016/j.vehcom.2025.100879
Amir Masoud Rahmani , Amir Haider , Khursheed Aurangzeb , May Altulyan , Entesar Gemeay , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Parisa Khoshvaght , Mehdi Hosseinzadeh
{"title":"A novel cylindrical filtering-based greedy perimeter stateless routing scheme in flying ad hoc networks","authors":"Amir Masoud Rahmani ,&nbsp;Amir Haider ,&nbsp;Khursheed Aurangzeb ,&nbsp;May Altulyan ,&nbsp;Entesar Gemeay ,&nbsp;Mohammad Sadegh Yousefpoor ,&nbsp;Efat Yousefpoor ,&nbsp;Parisa Khoshvaght ,&nbsp;Mehdi Hosseinzadeh","doi":"10.1016/j.vehcom.2025.100879","DOIUrl":null,"url":null,"abstract":"<div><div>Flying ad hoc networks (FANETs) are a new example of ad hoc networks, which arrange unmanned aerial vehicles (UAVs) in an ad hoc form. The features of these networks, such as the movement of UAVs in a 3D space, high speed of UAVs, dynamic topology, limited resources, and low density, have created vital challenges for communication reliability, especially when designing routing methods in FANETs. In this paper, a novel cylindrical filtering-based greedy perimeter stateless routing scheme (CF-GPSR) is suggested in FANETs. In CF-GPSR, cylindrical filtering reduces the size of the initial candidate set to accelerate the selection of the next-hop node. In this phase, the formulation of the cylindrical filtering construction process is expressed in the cylindrical coordinate system because the filtered area is a cylinder enclosed within the communication range of flying nodes. The cylindrical filtering construction process includes three steps, namely transferring coordinate axes, rotating coordinate axes, and cylinder construction. When selecting the next-hop node, CF-GPSR first uses this cylindrical filtering to limit the candidate set of each flying node. Then, CF-GPSR decides on the best next-hop UAV based on a merit function, which includes four criteria, namely velocity factor, ideal distance, residual energy, and movement angle, and selects a candidate node with the highest merit value as the next-hop UAV. Finally, the simulation process is performed using the NS 3.23 simulator, and four simulation scenarios are defined based on the number of UAVs, the communication area of nodes, network connections, and the size of packets to evaluate CF-GPSR. In the simulation process, CF-GPSR is compared with the three GPSR-based routing schemes, namely UF-GPSR, GPSR-PPU, and GPSR in terms of delay, data delivery ratio, data loss ratio, and throughput. In the first scenario, namely the change in the number of flying nodes, CF-GPSR improves delay, PDR, PLR, and throughput by 17.34%, 4.83%, 16%, and 7.05%, respectively. Also, in the second scenario, namely the change in communication range, the proposed method optimizes delay, PDR, PLR, and throughput by 4.91%, 5.71%, 6.12%, and 8.45%, respectively. In the third scenario, namely the change in the number of connections, CF-GPSR improves EED, PDR, PLR, and throughput by 18.41%, 9.09%, 9.52%, and 7.03%, respectively. In the fourth simulation scenario, namely the change in the packet size, CF-GPSR improves delay, PDR, PLR, and throughput by 14.81%, 19.39%, 7.19%, and 0.39%, respectively.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"52 ","pages":"Article 100879"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000063","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Flying ad hoc networks (FANETs) are a new example of ad hoc networks, which arrange unmanned aerial vehicles (UAVs) in an ad hoc form. The features of these networks, such as the movement of UAVs in a 3D space, high speed of UAVs, dynamic topology, limited resources, and low density, have created vital challenges for communication reliability, especially when designing routing methods in FANETs. In this paper, a novel cylindrical filtering-based greedy perimeter stateless routing scheme (CF-GPSR) is suggested in FANETs. In CF-GPSR, cylindrical filtering reduces the size of the initial candidate set to accelerate the selection of the next-hop node. In this phase, the formulation of the cylindrical filtering construction process is expressed in the cylindrical coordinate system because the filtered area is a cylinder enclosed within the communication range of flying nodes. The cylindrical filtering construction process includes three steps, namely transferring coordinate axes, rotating coordinate axes, and cylinder construction. When selecting the next-hop node, CF-GPSR first uses this cylindrical filtering to limit the candidate set of each flying node. Then, CF-GPSR decides on the best next-hop UAV based on a merit function, which includes four criteria, namely velocity factor, ideal distance, residual energy, and movement angle, and selects a candidate node with the highest merit value as the next-hop UAV. Finally, the simulation process is performed using the NS 3.23 simulator, and four simulation scenarios are defined based on the number of UAVs, the communication area of nodes, network connections, and the size of packets to evaluate CF-GPSR. In the simulation process, CF-GPSR is compared with the three GPSR-based routing schemes, namely UF-GPSR, GPSR-PPU, and GPSR in terms of delay, data delivery ratio, data loss ratio, and throughput. In the first scenario, namely the change in the number of flying nodes, CF-GPSR improves delay, PDR, PLR, and throughput by 17.34%, 4.83%, 16%, and 7.05%, respectively. Also, in the second scenario, namely the change in communication range, the proposed method optimizes delay, PDR, PLR, and throughput by 4.91%, 5.71%, 6.12%, and 8.45%, respectively. In the third scenario, namely the change in the number of connections, CF-GPSR improves EED, PDR, PLR, and throughput by 18.41%, 9.09%, 9.52%, and 7.03%, respectively. In the fourth simulation scenario, namely the change in the packet size, CF-GPSR improves delay, PDR, PLR, and throughput by 14.81%, 19.39%, 7.19%, and 0.39%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Vehicular Communications
Vehicular Communications Engineering-Electrical and Electronic Engineering
CiteScore
12.70
自引率
10.40%
发文量
88
审稿时长
62 days
期刊介绍: Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier. The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications: Vehicle to vehicle and vehicle to infrastructure communications Channel modelling, modulating and coding Congestion Control and scalability issues Protocol design, testing and verification Routing in vehicular networks Security issues and countermeasures Deployment and field testing Reducing energy consumption and enhancing safety of vehicles Wireless in–car networks Data collection and dissemination methods Mobility and handover issues Safety and driver assistance applications UAV Underwater communications Autonomous cooperative driving Social networks Internet of vehicles Standardization of protocols.
期刊最新文献
Resource allocation strategy for vehicular communication networks based on multi-agent deep reinforcement learning Compact 5 G mmWave vivaldi antenna for vehicular communication Dimensioning space-air-ground integrated networks for in-flight 6G slice orchestration A survey of intelligent reflecting surfaces: Performance analysis, extensions, potential challenges, and open research issues A data sharing scheme based on blockchain for privacy protection certification of Internet of Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1