{"title":"Resource allocation strategy for vehicular communication networks based on multi-agent deep reinforcement learning","authors":"Zhibin Liu, Yifei Deng","doi":"10.1016/j.vehcom.2025.100895","DOIUrl":null,"url":null,"abstract":"<div><div>In complex and high-mobility vehicular communication networks, rapidly changing channel conditions, signal interference, and stringent latency requirements of safety services pose significant challenges to existing wireless resource allocation schemes. We propose a novel resource allocation method named AMADRL. It is based on the multi-agent deep reinforcement learning (MADRL) algorithm and incorporates attention mechanisms (AM). This method first improves the traditional MADRL framework by employing two critic networks to estimate the corresponding global and local reward functions, achieving joint optimization of spectrum and power allocation. This optimization balances the individual interests of agents with the collective benefits, meeting the low-latency communication requirements of vehicle-to-vehicle (V2V) links. And this method effectively reduces the interference to the vehicle-to-infrastructure (V2I) links. Building on this foundation, we further integrate AM into the framework. The AM enables the model to selectively focus on critical information, dynamically adjusting resource allocation strategies. Simulation results demonstrate that, compared with random methods and conventional deep reinforcement learning (DRL) methods, the proposed algorithm exhibits superior convergence speed and stability. It effectively meets the communication requirements of different links and significantly improves spectrum efficiency.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100895"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000221","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In complex and high-mobility vehicular communication networks, rapidly changing channel conditions, signal interference, and stringent latency requirements of safety services pose significant challenges to existing wireless resource allocation schemes. We propose a novel resource allocation method named AMADRL. It is based on the multi-agent deep reinforcement learning (MADRL) algorithm and incorporates attention mechanisms (AM). This method first improves the traditional MADRL framework by employing two critic networks to estimate the corresponding global and local reward functions, achieving joint optimization of spectrum and power allocation. This optimization balances the individual interests of agents with the collective benefits, meeting the low-latency communication requirements of vehicle-to-vehicle (V2V) links. And this method effectively reduces the interference to the vehicle-to-infrastructure (V2I) links. Building on this foundation, we further integrate AM into the framework. The AM enables the model to selectively focus on critical information, dynamically adjusting resource allocation strategies. Simulation results demonstrate that, compared with random methods and conventional deep reinforcement learning (DRL) methods, the proposed algorithm exhibits superior convergence speed and stability. It effectively meets the communication requirements of different links and significantly improves spectrum efficiency.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.