Towards Solid-State Batteries Using a Calcium Hydridoborate Electrolyte

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-28 DOI:10.1002/anie.202500613
Lasse N. Skov, Jakob B. Grinderslev, Therese S. S. Kjær, Lasse R. Kristensen, Torben R. Jensen
{"title":"Towards Solid-State Batteries Using a Calcium Hydridoborate Electrolyte","authors":"Lasse N. Skov, Jakob B. Grinderslev, Therese S. S. Kjær, Lasse R. Kristensen, Torben R. Jensen","doi":"10.1002/anie.202500613","DOIUrl":null,"url":null,"abstract":"Solid-state batteries created from abundant elements, such as calcium, may pave the way for cheaper and safer electrical energy storage. Here we report a new type of solid calcium hydridoborate electrolyte, Ca(BH4)2·2NH2CH3, with a high ionic conductivity of σ(Ca2+) ~ 10-5 S cm-1 at T = 70 °C, which is assigned to a relatively open and flexible structure with apolar moieties and weak dihydrogen bonds that facilitate migration of Ca2+ ions in the solid state. The compound display a low electronic conductivity, providing an ionic transport number close to unity (tion = 0.9916). Calcium plating is observed for a Ca|Ca(BH4)2·2NH2CH3|Pt electrochemical cell and the electrodes are investigated using scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) that reveal a rugged Ca anode surface owing to the stripping process and the presence of Ca-containing domains on the Pt working electrode from the plating process. Improved electrochemical reversiblity was achieved in a three-electrode cell configuration using a CaxSn counter and reference electrode and a Sn working electrode, CaxSn|Ca(BH4)2·2NH2CH3|Sn, providing reversible Ca plating and stripping.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"25 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500613","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state batteries created from abundant elements, such as calcium, may pave the way for cheaper and safer electrical energy storage. Here we report a new type of solid calcium hydridoborate electrolyte, Ca(BH4)2·2NH2CH3, with a high ionic conductivity of σ(Ca2+) ~ 10-5 S cm-1 at T = 70 °C, which is assigned to a relatively open and flexible structure with apolar moieties and weak dihydrogen bonds that facilitate migration of Ca2+ ions in the solid state. The compound display a low electronic conductivity, providing an ionic transport number close to unity (tion = 0.9916). Calcium plating is observed for a Ca|Ca(BH4)2·2NH2CH3|Pt electrochemical cell and the electrodes are investigated using scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) that reveal a rugged Ca anode surface owing to the stripping process and the presence of Ca-containing domains on the Pt working electrode from the plating process. Improved electrochemical reversiblity was achieved in a three-electrode cell configuration using a CaxSn counter and reference electrode and a Sn working electrode, CaxSn|Ca(BH4)2·2NH2CH3|Sn, providing reversible Ca plating and stripping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用氢化硼酸钙电解质开发固态电池
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Self-optimizing Cobalt Tungsten Oxide Electrocatalysts toward Enhanced Oxygen Evolution in Alkaline Media Achieving Room-Temperature Phosphorescence in Solution Phase from Carbon Dots Confined in Nanocrystals Activating Organic Electrode for Zinc Batteries via Adjusting Solvation Structure of Zn Ions Unlocking the Power of Photothermal Agents: A Universal Platform for Smart Immune NIR-Agonists for Precise Cancer Therapy Efficient Infrared-Detecting Organic Semiconductors Featuring a Tetraheterocyclic Core with Reduced Ionization Potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1