{"title":"Microbially Glycolysis-Regulated Hard Carbons for Sodium-Ion Batteries","authors":"Guilin Feng, Xu Yang, Xiaohong Liu, Yongbin Wang, Yanting Xie, Panpan Dong, Xingxing Jiao, Chunliu Xu, Junmei Zhao, Yong-Sheng Hu, Weiqing Yang","doi":"10.1016/j.nanoen.2025.110728","DOIUrl":null,"url":null,"abstract":"Biomass-derived hard carbons (HCs) present significant opportunities for low-cost and high-performance sodium-ion batteries, but face the dilemma of low specific capacity and inadequate cycling stability. The exploration of biomass-derived HCs with electron-rich heteroatoms and nanopores structure has the potential to enhance the electrochemical performance by providing more active sites, expanding graphite spacing, and facilitating sodium ions transport. However, designing biomass-derived HCs that incorporate both electron-rich heteroatoms and nanopores remains a challenge. Herein, we report the use of microorganism’s bioactivity and cell membranes as space-confined reactors to create N and P co-doped HCs with a nanopore structure. And the influence of microorganism bioactivity on the preparation of HCs is explored. As expected, the yeast cell-derived hard carbons in glucose solution (YHCs-G) exhibit an impressive initial coulombic efficiency (ICE) of 84.6%, a remarkable reversible capacity of 320.3 mAh g<sup>-1</sup> at 0.1<!-- --> <!-- -->C, and favorable cycling stability, retaining 77.5% capacity at 10<!-- --> <!-- -->C even after 15,000 cycles, with only a 0.0015% capacity decay per cycle. Furthermore, the sodium storage mechanism of “adsorption-intercalation-pore filling” is evidenced by charge-discharges curves, <em>in-situ</em> Raman spectroscopy, <em>in-situ</em> X-ray diffraction and galvanostatic intermittent titration technique. This study offers a new insight and strategy for preparing N and P co-doped biomass-derived hard carbons with nanopore structure, highlighting the potential use of microorganisms and their bioactivity for stable and fast-charging of HCs in sodium-ion batteries.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"65 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110728","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass-derived hard carbons (HCs) present significant opportunities for low-cost and high-performance sodium-ion batteries, but face the dilemma of low specific capacity and inadequate cycling stability. The exploration of biomass-derived HCs with electron-rich heteroatoms and nanopores structure has the potential to enhance the electrochemical performance by providing more active sites, expanding graphite spacing, and facilitating sodium ions transport. However, designing biomass-derived HCs that incorporate both electron-rich heteroatoms and nanopores remains a challenge. Herein, we report the use of microorganism’s bioactivity and cell membranes as space-confined reactors to create N and P co-doped HCs with a nanopore structure. And the influence of microorganism bioactivity on the preparation of HCs is explored. As expected, the yeast cell-derived hard carbons in glucose solution (YHCs-G) exhibit an impressive initial coulombic efficiency (ICE) of 84.6%, a remarkable reversible capacity of 320.3 mAh g-1 at 0.1 C, and favorable cycling stability, retaining 77.5% capacity at 10 C even after 15,000 cycles, with only a 0.0015% capacity decay per cycle. Furthermore, the sodium storage mechanism of “adsorption-intercalation-pore filling” is evidenced by charge-discharges curves, in-situ Raman spectroscopy, in-situ X-ray diffraction and galvanostatic intermittent titration technique. This study offers a new insight and strategy for preparing N and P co-doped biomass-derived hard carbons with nanopore structure, highlighting the potential use of microorganisms and their bioactivity for stable and fast-charging of HCs in sodium-ion batteries.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.