Jan Katalinić, Morgan Richards, Alex Auyang, James H Millett, Manjunatha Kogenaru, Nikolai Windbichler
{"title":"Do the Shuffle: Expanding the Synthetic Biology Toolkit for Shufflon-like Recombination Systems.","authors":"Jan Katalinić, Morgan Richards, Alex Auyang, James H Millett, Manjunatha Kogenaru, Nikolai Windbichler","doi":"10.1021/acssynbio.4c00790","DOIUrl":null,"url":null,"abstract":"<p><p>Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) <i>Rci</i> from plasmid R64, recognizing asymmetric <i>sfx</i> sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs. We identified 14 previously untested SI genes and their <i>sfx</i> sites in public databases. We established an assay based on single-molecule sequencing that allows the quantification of the inversion rates of these enzymes and determined cross-recognition to identify orthogonal SI/<i>sfx</i> pairs. We describe SI enzymes with substantially improved shuffling rates when expressed in an inducible manner in <i>E. coli</i>. Our findings will facilitate the use of SIs in engineering biology where synthetic shufflons enable the generation of millions of sequence variants <i>in vivo</i> for applications such as barcoding or experimental selection.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00790","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) Rci from plasmid R64, recognizing asymmetric sfx sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs. We identified 14 previously untested SI genes and their sfx sites in public databases. We established an assay based on single-molecule sequencing that allows the quantification of the inversion rates of these enzymes and determined cross-recognition to identify orthogonal SI/sfx pairs. We describe SI enzymes with substantially improved shuffling rates when expressed in an inducible manner in E. coli. Our findings will facilitate the use of SIs in engineering biology where synthetic shufflons enable the generation of millions of sequence variants in vivo for applications such as barcoding or experimental selection.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.