A Systematic Review of Synthetic and Anticancer and Antimicrobial Activity of Quinazoline/Quinazolin-4-one Analogues.

IF 2.5 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemistryOpen Pub Date : 2025-01-28 DOI:10.1002/open.202400439
Neha Manhas, Gobind Kumar, Sanjeev Dhawan, Talent Makhanya, Parvesh Singh
{"title":"A Systematic Review of Synthetic and Anticancer and Antimicrobial Activity of Quinazoline/Quinazolin-4-one Analogues.","authors":"Neha Manhas, Gobind Kumar, Sanjeev Dhawan, Talent Makhanya, Parvesh Singh","doi":"10.1002/open.202400439","DOIUrl":null,"url":null,"abstract":"<p><p>Quinazolines/quinazolin-4-ones are significant nitrogen-containing heterocycles that exist in various natural products and synthetic scaffolds with diverse medicinal and pharmacological applications. Researchers across the globe have explored numerous synthetic strategies to develop safer and more potent quinazoline/quinazolinone analogues, particularly for combating cancer and microbial infections. This review systematically examines scholarly efforts toward understanding this scaffold's synthetic pathways and medicinal relevance, emphasizing the role of metal and non-metal catalysts and other reagents in their synthesis. Additionally, the article discusses selected compounds' anticancer and antimicrobial properties, with a brief look into their structure-activity relationships.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400439"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400439","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quinazolines/quinazolin-4-ones are significant nitrogen-containing heterocycles that exist in various natural products and synthetic scaffolds with diverse medicinal and pharmacological applications. Researchers across the globe have explored numerous synthetic strategies to develop safer and more potent quinazoline/quinazolinone analogues, particularly for combating cancer and microbial infections. This review systematically examines scholarly efforts toward understanding this scaffold's synthetic pathways and medicinal relevance, emphasizing the role of metal and non-metal catalysts and other reagents in their synthesis. Additionally, the article discusses selected compounds' anticancer and antimicrobial properties, with a brief look into their structure-activity relationships.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喹唑啉/喹唑啉-4-酮类似物的合成、抗癌和抗菌活性系统综述
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemistryOpen
ChemistryOpen CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
4.30%
发文量
143
审稿时长
1 months
期刊介绍: ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.
期刊最新文献
Effects of the Central Unit Structure, Lateral Substitution and Symmetry on the Mesomorphic Behavior of Some Bent-Core Azoester Derivatives. Utilization of Pulsed Current-Electro Fenton Technology for the Treatment of Wastewater from Industrial Processes. Hyperthermic Core-Shell Silver-Gold Nanoparticles: Green Synthesis and Adsorption-Uptake by Macrophages, Fibroblasts and Cancer Cells. B,N-Doped Activated Carbon-Based Electrodes from Potato Peels for Energy Storage Applications. CO2 Photoreduction Improvement by Carbon Nitride Utilizing the Synergism of Na Ion and Cyano Defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1