Impact of stabilizers on particle size and dispersion behavior in biorelevant media in solid nanocrystal formulations.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutics and Biopharmaceutics Pub Date : 2025-01-25 DOI:10.1016/j.ejpb.2025.114651
Nils Christian Böck, Julius Sundermann, Mirko Koziolek, Benjamin-Luca Keller, Karsten Mäder
{"title":"Impact of stabilizers on particle size and dispersion behavior in biorelevant media in solid nanocrystal formulations.","authors":"Nils Christian Böck, Julius Sundermann, Mirko Koziolek, Benjamin-Luca Keller, Karsten Mäder","doi":"10.1016/j.ejpb.2025.114651","DOIUrl":null,"url":null,"abstract":"<p><p>Nanocrystalline formulations typically contain stabilizing additives to minimize the risk of particle growth or agglomeration. This risk is particularly relevant when the nanosuspension is converted into a solid drug product as the original state of the nanosuspension should be restored upon redispersion of the drug product in vivo. In this work, the behavior of different nonionic and anionic surfactants in solid nanocrystalline formulations and their effects on redispersibility under biorelevant conditions were investigated. For this purpose, nanocrystalline formulations of basic (itraconazole, ritonavir), acidic (naproxen), and neutral (fenofibrate) API containing nonionic polymers acting as steric stabilizers combined either with anionic (sodium dodecyl sulfate, deoxycholate sodium, docusate sodium) or non-ionic surfactants (polysorbate 80, vitamin E-TPGS) were manufactured by nano-milling. These formulations were turned into a solid drug product by lyophilization and their redispersibility was tested by dispersing them in biorelevant media with different pH values and by characterizing their particle size distribution (PSD) and surface charge. In the absence of an anionic surfactant, it was difficult to achieve particle sizes below 500 nm. However, formulations stabilized anionically were at risk of agglomeration in gastric media. For basic API, the agglomeration was reversible for formulations containing sodium deoxycholate after increasing the pH from acidic to neutral levels, but it was found to be irreversible for those containing sodium dodecyl sulfate and docusate sodium. In summary, the type of anionic stabilizer and its interplay with the physicochemical properties of the API (basic, acidic, or neutral) should be considered in the development of solid nanocrystal formulations.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114651"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2025.114651","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocrystalline formulations typically contain stabilizing additives to minimize the risk of particle growth or agglomeration. This risk is particularly relevant when the nanosuspension is converted into a solid drug product as the original state of the nanosuspension should be restored upon redispersion of the drug product in vivo. In this work, the behavior of different nonionic and anionic surfactants in solid nanocrystalline formulations and their effects on redispersibility under biorelevant conditions were investigated. For this purpose, nanocrystalline formulations of basic (itraconazole, ritonavir), acidic (naproxen), and neutral (fenofibrate) API containing nonionic polymers acting as steric stabilizers combined either with anionic (sodium dodecyl sulfate, deoxycholate sodium, docusate sodium) or non-ionic surfactants (polysorbate 80, vitamin E-TPGS) were manufactured by nano-milling. These formulations were turned into a solid drug product by lyophilization and their redispersibility was tested by dispersing them in biorelevant media with different pH values and by characterizing their particle size distribution (PSD) and surface charge. In the absence of an anionic surfactant, it was difficult to achieve particle sizes below 500 nm. However, formulations stabilized anionically were at risk of agglomeration in gastric media. For basic API, the agglomeration was reversible for formulations containing sodium deoxycholate after increasing the pH from acidic to neutral levels, but it was found to be irreversible for those containing sodium dodecyl sulfate and docusate sodium. In summary, the type of anionic stabilizer and its interplay with the physicochemical properties of the API (basic, acidic, or neutral) should be considered in the development of solid nanocrystal formulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
期刊最新文献
Inhibition of naproxen crystallization by polymers: The role of topology and chain length of polyvinylpyrrolidone macromolecules. Development and characterization of pH-sensitive zerumbone-encapsulated liposomes for lung fibrosis via inhalation route. Enhancing therapeutic efficacy: In vivo mechanisms and biochemical effects of lycopene encapsulated in nanomicelles for acute inflammation and lipid metabolism. Application of microarray patches for the transdermal administration of psychedelic drugs in micro-doses. Fishroesomes show intrinsic anti-inflammatory bioactivity and ability as celecoxib carriers in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1