How short-term change in temperature or salinity affect cellular immune parameters of three-spined stickleback, Gasterosteus aculeatus?

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2025-01-23 DOI:10.1016/j.marenvres.2025.106972
Anne Bado-Nilles, Cleo Tebby, Alexandrine Pinet, Cyril Turiès, Jehan-Hervé Lignot, Jean-Marc Porcher
{"title":"How short-term change in temperature or salinity affect cellular immune parameters of three-spined stickleback, Gasterosteus aculeatus?","authors":"Anne Bado-Nilles, Cleo Tebby, Alexandrine Pinet, Cyril Turiès, Jehan-Hervé Lignot, Jean-Marc Porcher","doi":"10.1016/j.marenvres.2025.106972","DOIUrl":null,"url":null,"abstract":"<p><p>Reference values for the non-specific immune response of stickleback have been developed to better understand the natural variability of the immunomarkers and to increase their relevance for the detection of environmental perturbations. However, under field conditions, temperature and salinity can vary from station to station and their influence on the reference ranges of the immunomarkers should therefore be quantified. To this end, adult sticklebacks were exposed either to different temperatures (from 12 to 18 °C) or to different salinities (from 0 to 30 g/L) for 21 days after 10 days of acclimatization. The results were then projected onto reference ranges to better determine the effect of temperature and salinity on the innate immune response. With the exception of leucocyte necrosis at higher temperature and respiratory burst at lower temperature, previously established reference ranges for immunomarkers of sticklebacks were suitable when variations in temperature and salinity were tested. Finally, this study argues for the possibility of using stickleback and its immune reference range in the field regardless of temperature and salinity, due to its relatively temperature and salinity independent innate immune response. Reference ranges for immunomarkers in stickleback could be a real added value to water quality diagnosis in biomonitoring programs in variable seasonal and geographical environmental contexts. Furthermore, these results confirm the rapid adaptability of sticklebacks to different variations in temperature and salinity without affecting their immunological parameters.</p>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"106972"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marenvres.2025.106972","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reference values for the non-specific immune response of stickleback have been developed to better understand the natural variability of the immunomarkers and to increase their relevance for the detection of environmental perturbations. However, under field conditions, temperature and salinity can vary from station to station and their influence on the reference ranges of the immunomarkers should therefore be quantified. To this end, adult sticklebacks were exposed either to different temperatures (from 12 to 18 °C) or to different salinities (from 0 to 30 g/L) for 21 days after 10 days of acclimatization. The results were then projected onto reference ranges to better determine the effect of temperature and salinity on the innate immune response. With the exception of leucocyte necrosis at higher temperature and respiratory burst at lower temperature, previously established reference ranges for immunomarkers of sticklebacks were suitable when variations in temperature and salinity were tested. Finally, this study argues for the possibility of using stickleback and its immune reference range in the field regardless of temperature and salinity, due to its relatively temperature and salinity independent innate immune response. Reference ranges for immunomarkers in stickleback could be a real added value to water quality diagnosis in biomonitoring programs in variable seasonal and geographical environmental contexts. Furthermore, these results confirm the rapid adaptability of sticklebacks to different variations in temperature and salinity without affecting their immunological parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
The differential physiological responses to heat stress in the scleractinian coral Pocillopora damicornis are affected by its energy reserve. How short-term change in temperature or salinity affect cellular immune parameters of three-spined stickleback, Gasterosteus aculeatus? Pelagic shark intestine as a potential temporary sink for plastic and non-plastic particles. Ecological risk assessment for BDE-47 in marine environment based on species sensitivity distribution method. Predicted environmental concentration (PEC), environmental risk assessment (ERA) and prioritization of antiretroviral drugs (ARVs) in seawater from Guarujá (Brazilian coastal zone).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1