CellREADR: An ADAR-based RNA sensor-actuator device.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-01-10 DOI:10.1016/bs.mie.2024.11.027
Xiaolu Yang, Kehali Woldemichael, Xiao Guo, Shengli Zhao, Yongjun Qian, Z Josh Huang
{"title":"CellREADR: An ADAR-based RNA sensor-actuator device.","authors":"Xiaolu Yang, Kehali Woldemichael, Xiao Guo, Shengli Zhao, Yongjun Qian, Z Josh Huang","doi":"10.1016/bs.mie.2024.11.027","DOIUrl":null,"url":null,"abstract":"<p><p>RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell. The CellREADR RNA device consists of a 5' sensor region complementary to a cellular RNA and a 3' protein payload coding region. Payload translation is gated by the removal of a STOP codon in the sensor region upon base pairing with the cognate cellular RNA through an ADAR-mediated A-to-I editing mechanism ubiquitous to metazoan cells. CellREADR thus represents a new generation of programmable RNA device for monitoring and manipulating animal cells in ways that are simple, versatile, and generalizable across tissues and species. Here, we describe a detailed procedure for implementing CellREADR experiments in cell culture systems and in animals. The procedure includes sensor and payload design, cloning, validation and characterization in mammalian cell cultures. The in vivo protocol focuses on AAV-based delivery of CellREADR through expression vectors using brain tissue as an example. We describe current best practices and various experimental controls.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"710 ","pages":"207-227"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell. The CellREADR RNA device consists of a 5' sensor region complementary to a cellular RNA and a 3' protein payload coding region. Payload translation is gated by the removal of a STOP codon in the sensor region upon base pairing with the cognate cellular RNA through an ADAR-mediated A-to-I editing mechanism ubiquitous to metazoan cells. CellREADR thus represents a new generation of programmable RNA device for monitoring and manipulating animal cells in ways that are simple, versatile, and generalizable across tissues and species. Here, we describe a detailed procedure for implementing CellREADR experiments in cell culture systems and in animals. The procedure includes sensor and payload design, cloning, validation and characterization in mammalian cell cultures. The in vivo protocol focuses on AAV-based delivery of CellREADR through expression vectors using brain tissue as an example. We describe current best practices and various experimental controls.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
期刊最新文献
A probe-based capture enrichment method for detection of A-to-I editing in low abundance transcripts. Aptazyme-directed A-to-I RNA editing. Bioinformatic approaches for accurate assessment of A-to-I editing in complete transcriptomes. EndoVIA for quantifying A-to-I editing and mapping the subcellular localization of edited transcripts. Leveraging Saccharomyces cerevisiae for ADAR research: From high-yield purification to high-throughput screening and therapeutic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1