{"title":"The potential of <i>Streptococcus pyogenes</i> and <i>Escherichia coli</i> bacteriocins in synergistic control of <i>Staphylococcus aureus</i>.","authors":"Gideon Sadikiel Mmbando, Musa Wilson Salaja","doi":"10.1080/10826068.2025.2457556","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> has developed resistance to most conventional antibiotics and is a causative agent of serious infections. Alternative therapies are urgently needed. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, including <i>Escherichia coli</i> (<i>E. coli</i>) and <i>Streptococcus pyogenes</i> (<i>S. pyogenes</i>), and represent a potential solution. While several bacteriocins have shown promise, their synergy with bacteriocins from other bacterial species remains largely unexplored. This work used agar diffusion on Muller-Hinton Agar (MHA) with <i>S. aureus</i> as a test bacterium to evaluate <i>E. coli</i>, <i>S. pyogenes</i> and their combined bacteriocins. The bacteriocins of <i>S. pyogenes</i> showed the maximum antimicrobial activity of zone of inhibition (ZOI), 24.93 mm, compared to that of <i>E. coli</i> bacteriocin, which was 19.28 mm, and that of the combined ones at 100% concentration, 22.6 mm. The combined bacteriocins at 50% concentration showed a reduced activity of 18.35 mm. These observations suggest that the bacteriocins produced by <i>S. pyogenes</i> have higher specificity and activity against <i>S. aureus</i>, making them effective therapeutic agents in the fight against multidrug-resistant infections.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-9"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2025.2457556","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus has developed resistance to most conventional antibiotics and is a causative agent of serious infections. Alternative therapies are urgently needed. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, including Escherichia coli (E. coli) and Streptococcus pyogenes (S. pyogenes), and represent a potential solution. While several bacteriocins have shown promise, their synergy with bacteriocins from other bacterial species remains largely unexplored. This work used agar diffusion on Muller-Hinton Agar (MHA) with S. aureus as a test bacterium to evaluate E. coli, S. pyogenes and their combined bacteriocins. The bacteriocins of S. pyogenes showed the maximum antimicrobial activity of zone of inhibition (ZOI), 24.93 mm, compared to that of E. coli bacteriocin, which was 19.28 mm, and that of the combined ones at 100% concentration, 22.6 mm. The combined bacteriocins at 50% concentration showed a reduced activity of 18.35 mm. These observations suggest that the bacteriocins produced by S. pyogenes have higher specificity and activity against S. aureus, making them effective therapeutic agents in the fight against multidrug-resistant infections.
期刊介绍:
Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.