Zhuang Xiong, Jun Ma, Bohang Chen, Haiming Lan, Yong Niu
{"title":"Multi-source data recognition and fusion algorithm based on a two-layer genetic algorithm-back propagation model.","authors":"Zhuang Xiong, Jun Ma, Bohang Chen, Haiming Lan, Yong Niu","doi":"10.3389/fdata.2024.1520605","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional rainfall data collection mainly relies on rain buckets and meteorological data. It rarely considers the impact of sensor faults on measurement accuracy. To solve this problem, a two-layer genetic algorithm-backpropagation (GA-BP) model is proposed. The algorithm focuses on multi-source data identification and fusion. Rainfall data from a sensor array are first used. The GA optimizes the weights and thresholds of the BP neural network. It determines the optimal population and minimizes fitness values. This process builds a GA-BP model for recognizing sensor faults. A second GA-BP network is then created based on fault data. This model achieves data fusion output. The two-layer GA-BP algorithm is compared with a single BP neural network and actual expected values to test its performance. The results show that the two-layer GA-BP algorithm reduces data fusion runtime by 2.37 s compared to the single-layer BP model. For faults such as lost signals, high-value bias, and low-value bias, recognition accuracies improve by 26.09%, 18.18%, and 7.15%, respectively. The mean squared error is 3.49 mm lower than that of the single-layer BP model. The fusion output waveform is also smoother with less fluctuation. These results confirm that the two-layer GA-BP model improves system robustness and generalization.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1520605"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769991/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1520605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional rainfall data collection mainly relies on rain buckets and meteorological data. It rarely considers the impact of sensor faults on measurement accuracy. To solve this problem, a two-layer genetic algorithm-backpropagation (GA-BP) model is proposed. The algorithm focuses on multi-source data identification and fusion. Rainfall data from a sensor array are first used. The GA optimizes the weights and thresholds of the BP neural network. It determines the optimal population and minimizes fitness values. This process builds a GA-BP model for recognizing sensor faults. A second GA-BP network is then created based on fault data. This model achieves data fusion output. The two-layer GA-BP algorithm is compared with a single BP neural network and actual expected values to test its performance. The results show that the two-layer GA-BP algorithm reduces data fusion runtime by 2.37 s compared to the single-layer BP model. For faults such as lost signals, high-value bias, and low-value bias, recognition accuracies improve by 26.09%, 18.18%, and 7.15%, respectively. The mean squared error is 3.49 mm lower than that of the single-layer BP model. The fusion output waveform is also smoother with less fluctuation. These results confirm that the two-layer GA-BP model improves system robustness and generalization.