Hongao Liu, Chang Li, Xiaosong Hu, Jinwen Li, Kai Zhang, Yang Xie, Ranglei Wu, Ziyou Song
{"title":"Multi-modal framework for battery state of health evaluation using open-source electric vehicle data","authors":"Hongao Liu, Chang Li, Xiaosong Hu, Jinwen Li, Kai Zhang, Yang Xie, Ranglei Wu, Ziyou Song","doi":"10.1038/s41467-025-56485-7","DOIUrl":null,"url":null,"abstract":"<p>Accurate, practical, and robust evaluation of the battery state of health is crucial to the efficient and reliable operation of electric vehicles. However, the limited availability of large-scale, high-quality field data hinders the development of the battery management system for state of health estimation, lifetime prediction, and fault detection in various applications. In this work, to gain insights into underlying factors limiting battery management system performance in real-world vehicles, we analyze the operational data of 300 diverse electric vehicles over three years to understand the disparities between field data and laboratory battery test data and their effect on state of health estimation. Furthermore, we propose a deep learning-based multi-modal framework to effectively leverage historical vehicle data for efficient, accurate, and cost-effective state of health estimation. The proposed paradigm exhibits considerable potential for numerous applications in state estimation and diagnostics in multi-sensor systems. Furthermore, we make the field data of these electric vehicles publicly available aiming to promote further research on the development of effective and reliable battery management systems for real-world vehicles.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"45 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56485-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate, practical, and robust evaluation of the battery state of health is crucial to the efficient and reliable operation of electric vehicles. However, the limited availability of large-scale, high-quality field data hinders the development of the battery management system for state of health estimation, lifetime prediction, and fault detection in various applications. In this work, to gain insights into underlying factors limiting battery management system performance in real-world vehicles, we analyze the operational data of 300 diverse electric vehicles over three years to understand the disparities between field data and laboratory battery test data and their effect on state of health estimation. Furthermore, we propose a deep learning-based multi-modal framework to effectively leverage historical vehicle data for efficient, accurate, and cost-effective state of health estimation. The proposed paradigm exhibits considerable potential for numerous applications in state estimation and diagnostics in multi-sensor systems. Furthermore, we make the field data of these electric vehicles publicly available aiming to promote further research on the development of effective and reliable battery management systems for real-world vehicles.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.