Rhodium-Catalyzed Homogeneous Asymmetric Hydrogenation of Naphthol Derivatives

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-29 DOI:10.1021/jacs.4c15673
Shu-Xin Zhang, Linhong Long, Zeyu Li, Yan-Mei He, Shan Li, Hui Chen, Wei Hao, Qing-Hua Fan
{"title":"Rhodium-Catalyzed Homogeneous Asymmetric Hydrogenation of Naphthol Derivatives","authors":"Shu-Xin Zhang, Linhong Long, Zeyu Li, Yan-Mei He, Shan Li, Hui Chen, Wei Hao, Qing-Hua Fan","doi":"10.1021/jacs.4c15673","DOIUrl":null,"url":null,"abstract":"Due to their strong aromaticity and difficulties in chemo-, regio-, and enantioselectivity control, asymmetric hydrogenation of naphthol derivatives to 1,2,3,4-tetrahydronaphthols has remained a long-standing challenge. Herein, we report the first example of homogeneous asymmetric hydrogenation of naphthol derivatives catalyzed by tethered rhodium–diamine catalysts, affording a wide array of optically pure 1,2,3,4-tetrahydronaphthols in high yields with excellent regio-, chemo-, and enantioselectivities (up to 98% yield and >99% ee). Mechanistic studies with experimental and computational approaches reveal that fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) plays vital roles in the control of reactivity and selectivity, and 1-naphthol is reduced via a cascade reaction pathway, including dearomative tautomerization, 1,4-hydride addition, and 1,2-hydride addition in sequence. A novel synergistic activation mode was proposed in which HFIP assists a synergistic activation of both the hydrogen molecule and naphthol in the presence of a base, and the in situ-generated fleeting keto tautomer is immediately trapped and reduced by the Rh(III)–H species before it escapes from the solvent cage. This protocol provides a straightforward and practical pathway for the synthesis of key intermediates for several chiral drugs. Particularly, optically pure Nadolol, a drug for the treatment of hypertension, angina pectoris, congestive heart failure, and certain arrhythmias, is enantioselectively synthesized for the first time.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"14 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15673","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their strong aromaticity and difficulties in chemo-, regio-, and enantioselectivity control, asymmetric hydrogenation of naphthol derivatives to 1,2,3,4-tetrahydronaphthols has remained a long-standing challenge. Herein, we report the first example of homogeneous asymmetric hydrogenation of naphthol derivatives catalyzed by tethered rhodium–diamine catalysts, affording a wide array of optically pure 1,2,3,4-tetrahydronaphthols in high yields with excellent regio-, chemo-, and enantioselectivities (up to 98% yield and >99% ee). Mechanistic studies with experimental and computational approaches reveal that fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) plays vital roles in the control of reactivity and selectivity, and 1-naphthol is reduced via a cascade reaction pathway, including dearomative tautomerization, 1,4-hydride addition, and 1,2-hydride addition in sequence. A novel synergistic activation mode was proposed in which HFIP assists a synergistic activation of both the hydrogen molecule and naphthol in the presence of a base, and the in situ-generated fleeting keto tautomer is immediately trapped and reduced by the Rh(III)–H species before it escapes from the solvent cage. This protocol provides a straightforward and practical pathway for the synthesis of key intermediates for several chiral drugs. Particularly, optically pure Nadolol, a drug for the treatment of hypertension, angina pectoris, congestive heart failure, and certain arrhythmias, is enantioselectively synthesized for the first time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铑催化萘酚衍生物的均相不对称氢化反应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia Molecular and Electronic Structures at Electrochemical Interfaces from In Situ Resonant X-Ray Diffraction Selective Depolymerization for Sculpting Polymethacrylate Molecular Weight Distributions Rhodium-Catalyzed Homogeneous Asymmetric Hydrogenation of Naphthol Derivatives Welcome, 2025
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1