Lucas Gonçalves Queiroz, Caio César Achiles do Prado, Paulo Filho Marques de Oliveira, Daniel Farinha Valezi, Marcelo Cecconi Portes, Beatriz Rocha de Moraes, Rômulo Augusto Ando, Eduardo Vicente, Teresa Cristina Brazil de Paiva, Marcelo Pompêo, Bárbara Rani-Borges
{"title":"The Toxicity of Poly(acrylonitrile-styrene-butadiene) Microplastics toward <i>Hyalella azteca</i> Is Associated with Biofragmentation and Oxidative Stress.","authors":"Lucas Gonçalves Queiroz, Caio César Achiles do Prado, Paulo Filho Marques de Oliveira, Daniel Farinha Valezi, Marcelo Cecconi Portes, Beatriz Rocha de Moraes, Rômulo Augusto Ando, Eduardo Vicente, Teresa Cristina Brazil de Paiva, Marcelo Pompêo, Bárbara Rani-Borges","doi":"10.1021/acs.chemrestox.4c00300","DOIUrl":null,"url":null,"abstract":"<p><p>Acrylonitrile-butadiene-styrene (ABS) is a thermoplastic copolymer commonly used in the electronics, automotive, and construction industries. In the aquatic environment, the formation of microplastics from larger-sized plastic waste occurs naturally, induced by physical, chemical, and biological processes that promote the aging of these particles. Here, we investigated the interactions between the freshwater amphipod <i>Hyalella azteca</i> and ABS microplastics (10-20 μm) (pristine and after accelerated aging) over 7 days of exposure. At the end of the exposure period, we evaluated the ability of <i>H. azteca</i> to fragment the ABS particles, as well as the changes in its oxidative stress biomarkers (SOD, CAT, MDA, and GST) as the result of ABS exposure. <i>H. azteca</i> promoted a significant fragmentation of ABS particles. The ratio of this biofragmentation was more pronounced in pristine particles. Despite the absence of significant changes in the mortality of exposed organisms, alterations in the oxidative stress biomarkers were observed. The results demonstrate the ability of <i>H. azteca</i> to fragment pristine and aged ABS microplastics and, the consequent susceptibility of these organisms to the effects of microplastic exposure.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 1","pages":"91-101"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00300","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acrylonitrile-butadiene-styrene (ABS) is a thermoplastic copolymer commonly used in the electronics, automotive, and construction industries. In the aquatic environment, the formation of microplastics from larger-sized plastic waste occurs naturally, induced by physical, chemical, and biological processes that promote the aging of these particles. Here, we investigated the interactions between the freshwater amphipod Hyalella azteca and ABS microplastics (10-20 μm) (pristine and after accelerated aging) over 7 days of exposure. At the end of the exposure period, we evaluated the ability of H. azteca to fragment the ABS particles, as well as the changes in its oxidative stress biomarkers (SOD, CAT, MDA, and GST) as the result of ABS exposure. H. azteca promoted a significant fragmentation of ABS particles. The ratio of this biofragmentation was more pronounced in pristine particles. Despite the absence of significant changes in the mortality of exposed organisms, alterations in the oxidative stress biomarkers were observed. The results demonstrate the ability of H. azteca to fragment pristine and aged ABS microplastics and, the consequent susceptibility of these organisms to the effects of microplastic exposure.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.