Rahul Jaiswal, Brandon Braud, Karen C Hernandez-Ramirez, Vishaka Santosh, Alexander Washington, Carlos R Escalante
{"title":"Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting","authors":"Rahul Jaiswal, Brandon Braud, Karen C Hernandez-Ramirez, Vishaka Santosh, Alexander Washington, Carlos R Escalante","doi":"10.1093/nar/gkaf033","DOIUrl":null,"url":null,"abstract":"The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states. In the nucleotide-free state, Rep68 forms a heptameric complex around DNA, with three origin-binding domains (OBDs) bound to the Rep-binding element sequence, while three remaining OBDs form transient dimers with them. The AAA+ domains form an open ring without interactions between subunits and DNA. We hypothesize that the heptameric structure is crucial for loading Rep68 onto double-stranded DNA. The ATPγS complex shows that only three subunits associate with the nucleotide, leading to a conformational change that promotes the formation of both intersubunit and DNA interactions. Moreover, three phenylalanine residues in the AAA+ domain induce a steric distortion in the DNA. Our study provides insights into how an SF3 helicase assembles on DNA and provides insights into the DNA melting process.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"124 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf033","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states. In the nucleotide-free state, Rep68 forms a heptameric complex around DNA, with three origin-binding domains (OBDs) bound to the Rep-binding element sequence, while three remaining OBDs form transient dimers with them. The AAA+ domains form an open ring without interactions between subunits and DNA. We hypothesize that the heptameric structure is crucial for loading Rep68 onto double-stranded DNA. The ATPγS complex shows that only three subunits associate with the nucleotide, leading to a conformational change that promotes the formation of both intersubunit and DNA interactions. Moreover, three phenylalanine residues in the AAA+ domain induce a steric distortion in the DNA. Our study provides insights into how an SF3 helicase assembles on DNA and provides insights into the DNA melting process.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.