James C Taggart, Kathryn Julia Dierksheide, Hannah J LeBlanc, Jean-Benoît Lalanne, Sylvain Durand, Frédérique Braun, Ciarán Condon, Gene-Wei Li
{"title":"A high-resolution view of RNA endonuclease cleavage in Bacillus subtilis","authors":"James C Taggart, Kathryn Julia Dierksheide, Hannah J LeBlanc, Jean-Benoît Lalanne, Sylvain Durand, Frédérique Braun, Ciarán Condon, Gene-Wei Li","doi":"10.1093/nar/gkaf030","DOIUrl":null,"url":null,"abstract":"RNA endonucleases are the rate-limiting initiator of decay for many bacterial mRNAs. However, the positions of cleavage and their sequence determinants remain elusive even for the well-studied Bacillus subtilis. Here we present two complementary approaches—transcriptome-wide mapping of endoribonucleolytic activity and deep mutational scanning of RNA cleavage sites—that reveal distinct rules governing the specificity among B. subtilis endoribonucleases. Detection of RNA terminal nucleotides in both 5′- and 3′-exonuclease-deficient cells revealed >103 putative endonucleolytic cleavage sites with single-nucleotide resolution. We found a surprisingly weak consensus for RNase Y targets, a contrastingly strong primary sequence motif for EndoA targets, and long-range intramolecular secondary structures for RNase III targets. Deep mutational analysis of RNase Y cleavage sites showed that the specificity is governed by many disjointed sequence features. Our results highlight the delocalized nature of mRNA stability determinants and provide a strategy for elucidating endoribonuclease specificity in vivo.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"54 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf030","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA endonucleases are the rate-limiting initiator of decay for many bacterial mRNAs. However, the positions of cleavage and their sequence determinants remain elusive even for the well-studied Bacillus subtilis. Here we present two complementary approaches—transcriptome-wide mapping of endoribonucleolytic activity and deep mutational scanning of RNA cleavage sites—that reveal distinct rules governing the specificity among B. subtilis endoribonucleases. Detection of RNA terminal nucleotides in both 5′- and 3′-exonuclease-deficient cells revealed >103 putative endonucleolytic cleavage sites with single-nucleotide resolution. We found a surprisingly weak consensus for RNase Y targets, a contrastingly strong primary sequence motif for EndoA targets, and long-range intramolecular secondary structures for RNase III targets. Deep mutational analysis of RNase Y cleavage sites showed that the specificity is governed by many disjointed sequence features. Our results highlight the delocalized nature of mRNA stability determinants and provide a strategy for elucidating endoribonuclease specificity in vivo.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.