M. Gomilšek, T. J. Hicken, M. N. Wilson, K. J. A. Franke, B. M. Huddart, A. Štefančič, S. J. R. Holt, G. Balakrishnan, D. A. Mayoh, M. T. Birch, S. H. Moody, H. Luetkens, Z. Guguchia, M. T. F. Telling, P. J. Baker, S. J. Clark, T. Lancaster
{"title":"Anisotropic Skyrmion and Multi- q Spin Dynamics in Centrosymmetric Gd2PdSi3","authors":"M. Gomilšek, T. J. Hicken, M. N. Wilson, K. J. A. Franke, B. M. Huddart, A. Štefančič, S. J. R. Holt, G. Balakrishnan, D. A. Mayoh, M. T. Birch, S. H. Moody, H. Luetkens, Z. Guguchia, M. T. F. Telling, P. J. Baker, S. J. Clark, T. Lancaster","doi":"10.1103/physrevlett.134.046702","DOIUrl":null,"url":null,"abstract":"Skyrmions are particlelike vortices of magnetization with nontrivial topology, which are usually stabilized by Dzyaloshinskii-Moriya interactions (DMI) in noncentrosymmetric bulk materials. Exceptions are centrosymmetric Gd- and Eu-based skyrmion-lattice (SL) hosts with zero DMI, where both the SL stabilization mechanisms and magnetic ground states remain controversial. We address these here by investigating both the static and dynamical spin properties of the centrosymmetric SL host Gd</a:mi></a:mrow>2</a:mn></a:mrow></a:msub>PdSi</a:mi></a:mrow>3</a:mn></a:mrow></a:msub></a:mrow></a:math> using muon spectroscopy. We find that spin fluctuations in the noncoplanar SL phase are highly anisotropic, implying that spin anisotropy plays a prominent role in stabilizing this phase. We also observe strongly anisotropic spin dynamics in the ground-state (IC-1) incommensurate magnetic phase of the material, indicating that it hosts a meronlike multi-<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>q</c:mi></c:math> structure. In contrast, the higher-field, coplanar IC-2 phase is found to be single <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>q</e:mi></e:math> with nearly isotropic spin dynamics. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"28 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.046702","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Skyrmions are particlelike vortices of magnetization with nontrivial topology, which are usually stabilized by Dzyaloshinskii-Moriya interactions (DMI) in noncentrosymmetric bulk materials. Exceptions are centrosymmetric Gd- and Eu-based skyrmion-lattice (SL) hosts with zero DMI, where both the SL stabilization mechanisms and magnetic ground states remain controversial. We address these here by investigating both the static and dynamical spin properties of the centrosymmetric SL host Gd2PdSi3 using muon spectroscopy. We find that spin fluctuations in the noncoplanar SL phase are highly anisotropic, implying that spin anisotropy plays a prominent role in stabilizing this phase. We also observe strongly anisotropic spin dynamics in the ground-state (IC-1) incommensurate magnetic phase of the material, indicating that it hosts a meronlike multi-q structure. In contrast, the higher-field, coplanar IC-2 phase is found to be single q with nearly isotropic spin dynamics. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks