Modulating Enzyme's Conformational Space: Impact of Substrate Binding, Mode Alteration, and Active Site Mutation in DapC, an Aminotransferase Enzyme of Lysine Biosynthetic Pathway.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-03-20 Epub Date: 2025-01-28 DOI:10.1021/acs.jpcb.4c06274
Sourav Manna, Sabyashachi Mishra
{"title":"Modulating Enzyme's Conformational Space: Impact of Substrate Binding, Mode Alteration, and Active Site Mutation in DapC, an Aminotransferase Enzyme of Lysine Biosynthetic Pathway.","authors":"Sourav Manna, Sabyashachi Mishra","doi":"10.1021/acs.jpcb.4c06274","DOIUrl":null,"url":null,"abstract":"<p><p>The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including <i>Mycobacterium tuberculosis</i>. Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase. DapC undergoes an open-to-closed conformational change upon substrate binding, characterized by the movement of the N-terminal α2 helix, akin to that observed in the class Ib aspartate aminotransferase from <i>Thermus thermophilus</i>. Based on sequence similarity, essential dynamics, and the absence of the characteristic hinge movement, DapC is classified as a class Ib aminotransferase of type-I pyridoxal-5'-phosphate (PLP)-dependent enzyme. In the open state of DapC, two binding modes of glutamate, namely, canonical and alternate, separated by a dihedral rotation, are equally preferred. The closed state prefers the canonical binding mode, which is favorable for catalysis. In the case where the substrate binds in the alternate mode, a low-barrier dihedral rotation generates the canonical mode for efficient catalysis. The presence of two highly conserved residues, Phe14 and Gln31, stabilizes the closed state of substrate-bound DapC. Mutations of these residues disrupt the crucial hydrophobic interactions with the substrate, causing the enzyme to shift to an open state. While Phe14 has a dominant role, Gln31 is less consequential in regulating the conformational change, while the double mutation leads to a rapid conformation change.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"2815-2828"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06274","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including Mycobacterium tuberculosis. Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase. DapC undergoes an open-to-closed conformational change upon substrate binding, characterized by the movement of the N-terminal α2 helix, akin to that observed in the class Ib aspartate aminotransferase from Thermus thermophilus. Based on sequence similarity, essential dynamics, and the absence of the characteristic hinge movement, DapC is classified as a class Ib aminotransferase of type-I pyridoxal-5'-phosphate (PLP)-dependent enzyme. In the open state of DapC, two binding modes of glutamate, namely, canonical and alternate, separated by a dihedral rotation, are equally preferred. The closed state prefers the canonical binding mode, which is favorable for catalysis. In the case where the substrate binds in the alternate mode, a low-barrier dihedral rotation generates the canonical mode for efficient catalysis. The presence of two highly conserved residues, Phe14 and Gln31, stabilizes the closed state of substrate-bound DapC. Mutations of these residues disrupt the crucial hydrophobic interactions with the substrate, causing the enzyme to shift to an open state. While Phe14 has a dominant role, Gln31 is less consequential in regulating the conformational change, while the double mutation leads to a rapid conformation change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Modulating Enzyme's Conformational Space: Impact of Substrate Binding, Mode Alteration, and Active Site Mutation in DapC, an Aminotransferase Enzyme of Lysine Biosynthetic Pathway. Local Diffusion Coefficients in Spherically Symmetric Systems Using the Smoluchowski Equation and Molecular Dynamics. Multiblock Copolymers at Liquid-Liquid Interfaces: Effect of the Block Sequence on Interfacial Tension and Polymer Conformation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1