Aoxiang Jin, Chunxiang Lu, Chuang Gao, Hao Qiao, Yi Zhang, Huazhen Liu, Wenbin Sun, Qiqi Dai, Yuanyuan Liu
{"title":"Biomimetic basement membranes: advances in materials, preparation techniques, and applications in <i>in vitro</i> biological models.","authors":"Aoxiang Jin, Chunxiang Lu, Chuang Gao, Hao Qiao, Yi Zhang, Huazhen Liu, Wenbin Sun, Qiqi Dai, Yuanyuan Liu","doi":"10.1039/d4bm01682c","DOIUrl":null,"url":null,"abstract":"<p><p><i>In vitro</i> biological model technology has become a cornerstone of modern biological research, driving advancements in drug screening, physiological and pathological studies, and tissue implantation applications. The natural basement membrane (BM), a homogeneous structure, provides critical physical and biological support for tissues and organs. To replicate its function, researchers have developed biomimetic BMs using advanced fabrication technologies, which are increasingly applied to <i>in vitro</i> models. This review explores the materials, preparation techniques, and applications of biomimetic BMs across various biological models, highlighting their advantages and limitations. Additionally, it discusses recent progress in the field and identifies current challenges in achieving BM simulations that closely mimic native structures. Future directions and recommendations are provided to guide the development of high-performance biomimetic BM materials and their manufacturing processes.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01682c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro biological model technology has become a cornerstone of modern biological research, driving advancements in drug screening, physiological and pathological studies, and tissue implantation applications. The natural basement membrane (BM), a homogeneous structure, provides critical physical and biological support for tissues and organs. To replicate its function, researchers have developed biomimetic BMs using advanced fabrication technologies, which are increasingly applied to in vitro models. This review explores the materials, preparation techniques, and applications of biomimetic BMs across various biological models, highlighting their advantages and limitations. Additionally, it discusses recent progress in the field and identifies current challenges in achieving BM simulations that closely mimic native structures. Future directions and recommendations are provided to guide the development of high-performance biomimetic BM materials and their manufacturing processes.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.