{"title":"Mechanistic Insights into the Apoptosis of Cancer Cells Induced by a Kinase-Responsive Peptide Amphiphile.","authors":"Natsumi Shimizu, Sayuki Kanemitsu, Riku Umemura, Tomoko Yashiro, Ryoko Kawabata, Kanon Nishimura, Shinya Kawasaki, Kenta Morita, Takashi Aoi, Tatsuo Maruyama","doi":"10.1002/chem.202403658","DOIUrl":null,"url":null,"abstract":"<p><p>Organelle targeting is a useful approach in drug development for cancer therapy. Peptide amphiphiles are good candidates for targeting specific organelles because they can be engineered into a wide range of molecular structures, enabling customization for specific functional needs. We have developed a peptide amphiphile, C16-(EY)3, that can respond to tyrosine kinase activity and undergo phosphorylation inside cancer cells. C16-(EY)3 selectively induced apoptosis in cancer cells that overexpressed tyrosine kinase. The peptide amphiphile self-assembled into nanofibers on the endoplasmic reticulum (ER) membrane, reducing the ER membrane fluidity and triggering ER stress. The mechanism of the cancer cell death induced by C16-(EY)3 was shown to involve phosphorylation by tyrosine kinase, ER stress induction, and the subsequent activation of caspase-4, -12, and -9, which ultimately triggered apoptosis through the activation of caspase-3 and -7. In vivo studies further validated the antitumor efficacy of C16-(EY)3 as transcutaneous administration of the peptide amphiphile inhibited tumor growth in mice. This study elucidated the mechanism of apoptosis induced by the peptide amphiphile, indicating the potential of peptide amphiphiles as organelle-targeting cancer therapeutics and providing a novel strategy for the development of selective and potent anticancer drugs.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403658"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403658","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organelle targeting is a useful approach in drug development for cancer therapy. Peptide amphiphiles are good candidates for targeting specific organelles because they can be engineered into a wide range of molecular structures, enabling customization for specific functional needs. We have developed a peptide amphiphile, C16-(EY)3, that can respond to tyrosine kinase activity and undergo phosphorylation inside cancer cells. C16-(EY)3 selectively induced apoptosis in cancer cells that overexpressed tyrosine kinase. The peptide amphiphile self-assembled into nanofibers on the endoplasmic reticulum (ER) membrane, reducing the ER membrane fluidity and triggering ER stress. The mechanism of the cancer cell death induced by C16-(EY)3 was shown to involve phosphorylation by tyrosine kinase, ER stress induction, and the subsequent activation of caspase-4, -12, and -9, which ultimately triggered apoptosis through the activation of caspase-3 and -7. In vivo studies further validated the antitumor efficacy of C16-(EY)3 as transcutaneous administration of the peptide amphiphile inhibited tumor growth in mice. This study elucidated the mechanism of apoptosis induced by the peptide amphiphile, indicating the potential of peptide amphiphiles as organelle-targeting cancer therapeutics and providing a novel strategy for the development of selective and potent anticancer drugs.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.