Deep learning aided determination of the optimal number of detectors for photoacoustic tomography.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2025-02-07 DOI:10.1088/2057-1976/adaf29
Sudeep Mondal, Subhadip Paul, Navjot Singh, Pankaj Warbal, Zartab Khanam, Ratan K Saha
{"title":"Deep learning aided determination of the optimal number of detectors for photoacoustic tomography.","authors":"Sudeep Mondal, Subhadip Paul, Navjot Singh, Pankaj Warbal, Zartab Khanam, Ratan K Saha","doi":"10.1088/2057-1976/adaf29","DOIUrl":null,"url":null,"abstract":"<p><p>Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT. This work introduces a post-processing-based CNN architecture named residual-dense UNet (RDUNet) to address the stride artifacts in reconstructed PA images. The framework adopts the benefits of residual and dense blocks to form high-resolution reconstructed images. The network is trained with two different types of datasets to learn the relationship between the reconstructed images and their corresponding ground truths (GTs). In the first protocol, RDUNet (identified as RDUNet I) underwent training on heterogeneous simulated images featuring three distinct phantom types. Subsequently, in the second protocol, RDUNet (referred to as RDUNet II) was trained on a heterogeneous composition of 81% simulated data and 19% experimental data. The motivation behind this is to allow the network to adapt to diverse experimental challenges. The RDUNet algorithm was validated by performing numerical and experimental studies involving single-disk, T-shape, and vasculature phantoms. The performance of this protocol was compared with the famous backprojection (BP) and the traditional UNet algorithms. This study shows that RDUNet can substantially reduce the number of detectors from 100 to 25 for simulated testing images and 30 for experimental scenarios.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adaf29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT. This work introduces a post-processing-based CNN architecture named residual-dense UNet (RDUNet) to address the stride artifacts in reconstructed PA images. The framework adopts the benefits of residual and dense blocks to form high-resolution reconstructed images. The network is trained with two different types of datasets to learn the relationship between the reconstructed images and their corresponding ground truths (GTs). In the first protocol, RDUNet (identified as RDUNet I) underwent training on heterogeneous simulated images featuring three distinct phantom types. Subsequently, in the second protocol, RDUNet (referred to as RDUNet II) was trained on a heterogeneous composition of 81% simulated data and 19% experimental data. The motivation behind this is to allow the network to adapt to diverse experimental challenges. The RDUNet algorithm was validated by performing numerical and experimental studies involving single-disk, T-shape, and vasculature phantoms. The performance of this protocol was compared with the famous backprojection (BP) and the traditional UNet algorithms. This study shows that RDUNet can substantially reduce the number of detectors from 100 to 25 for simulated testing images and 30 for experimental scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Validation of a 3D printed bolus for radiotherapy: a proof-of-concept study. Monolithic U-shaped crystal design for TOF-DOI detectors: a flat top versus a tapered top. Exploring spatial dose information in the parotid gland for xerostomia prediction and local dose patterns in head and neck cancer radiotherapy. Study of attenuation characteristics for novel neonatal head phantom in diagnostic radiology using Monte Carlo simulations and experiments. Deep Learning-based Video-level View Classification of Two-dimensional Transthoracic Echocardiography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1