Study of attenuation characteristics for novel neonatal head phantom in diagnostic radiology using Monte Carlo simulations and experiments.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2025-02-03 DOI:10.1088/2057-1976/adb15c
Hamza Sekkat, Khallouqi Abdellah, Omar El Rhazouani, Youssef Madkouri, Abdellah Halimi
{"title":"Study of attenuation characteristics for novel neonatal head phantom in diagnostic radiology using Monte Carlo simulations and experiments.","authors":"Hamza Sekkat, Khallouqi Abdellah, Omar El Rhazouani, Youssef Madkouri, Abdellah Halimi","doi":"10.1088/2057-1976/adb15c","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the design and validation of a neonatal head phantom using innovative heterogeneous composite materials customized to replicate the X-ray attenuation properties of neonatal cranial structures. Analysis of Hounsfield Unit (HU) data from 338 neonatal head CT scans informed the design of epoxy resin-based composites with additives such as sodium bicarbonate, fumed silica, and acetone to simulate bone, brain matter, cerebrospinal fluid (CSF) and hyperdense abnormalities. The cranial bone substitute (60% epoxy resin, 40% sodium bicarbonate) achieved a density of 1.60 g/cm³, with HU values (574.67-608.04) closely matching clinical ranges. Brain matter (95% epoxy resin, 5% acetone) achieved HU values (35.27-43.61), aligning with clinical means, while the CSF-equivalent material (80% epoxy resin, 15% fumed silica, 5% acetone) matched neonatal CSF HU values (14.53-17.02). A mass substitute for hyperdense abnormalities exhibited HU values (56.16-61.07), enabling differentiation from normal brain. Validation included Monte Carlo simulations and experimental CT imaging, showing close agreement in linear attenuation coefficients, with deviations below 11% across energy levels. Mass attenuation coefficients from simulations and XCOM software were consistent, with deviations under 0.7%, confirming the materials dosimetric reliability. The phantom, with a cylindrical geometry (9 cm diameter, 10 cm length), provides accurate attenuation properties across 80-120 kVp energy levels, with deviations below 5% between experimental CT numbers and simulation data. This phantom offers a robust platform for neonatal imaging research, enabling impactful dose optimization and imaging protocol adjustment and supports improved diagnostic accuracy in pediatric imaging.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adb15c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the design and validation of a neonatal head phantom using innovative heterogeneous composite materials customized to replicate the X-ray attenuation properties of neonatal cranial structures. Analysis of Hounsfield Unit (HU) data from 338 neonatal head CT scans informed the design of epoxy resin-based composites with additives such as sodium bicarbonate, fumed silica, and acetone to simulate bone, brain matter, cerebrospinal fluid (CSF) and hyperdense abnormalities. The cranial bone substitute (60% epoxy resin, 40% sodium bicarbonate) achieved a density of 1.60 g/cm³, with HU values (574.67-608.04) closely matching clinical ranges. Brain matter (95% epoxy resin, 5% acetone) achieved HU values (35.27-43.61), aligning with clinical means, while the CSF-equivalent material (80% epoxy resin, 15% fumed silica, 5% acetone) matched neonatal CSF HU values (14.53-17.02). A mass substitute for hyperdense abnormalities exhibited HU values (56.16-61.07), enabling differentiation from normal brain. Validation included Monte Carlo simulations and experimental CT imaging, showing close agreement in linear attenuation coefficients, with deviations below 11% across energy levels. Mass attenuation coefficients from simulations and XCOM software were consistent, with deviations under 0.7%, confirming the materials dosimetric reliability. The phantom, with a cylindrical geometry (9 cm diameter, 10 cm length), provides accurate attenuation properties across 80-120 kVp energy levels, with deviations below 5% between experimental CT numbers and simulation data. This phantom offers a robust platform for neonatal imaging research, enabling impactful dose optimization and imaging protocol adjustment and supports improved diagnostic accuracy in pediatric imaging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Electroencephalogram features reflect effort corresponding to graded finger extension: implications for hemiparetic stroke. Deep learning aided determination of the optimal number of detectors for photoacoustic tomography. Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation. Full fine-tuning strategy for endoscopic foundation models with expanded learnable offset parameters. Magnetic vector field mapping of the stimulated abductor digiti minimi muscle with optically pumped magnetometers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1