Kunkoo Kim, Jia Yang, Chengli Li, Chun-Yi Yang, Peilun Hu, Yaosai Liu, Yin-Yuan Huang, Xiaohan Sun, Ming Chi, Chenyu Huang, Xiaodan Sun, Lingyun Zhao, Xiumei Wang
{"title":"Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.","authors":"Kunkoo Kim, Jia Yang, Chengli Li, Chun-Yi Yang, Peilun Hu, Yaosai Liu, Yin-Yuan Huang, Xiaohan Sun, Ming Chi, Chenyu Huang, Xiaodan Sun, Lingyun Zhao, Xiumei Wang","doi":"10.1016/j.bioactmat.2025.01.004","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells. Additionally, we incorporated a VEGF-mimicking peptide to further reinforce angiogenesis, a pivotal phase that interlocks with immune regulation, neurogenesis, and tissue regeneration, ultimately contributing to optimized inter-microenvironmental crosstalk. <i>In vivo</i> studies validated that the anisotropic bioactive nanofiber hydrogel effectively accelerated diabetic wound healing by harnessing the triadic synergy of the immune-angiogenic-neurogenic microenvironments. Our findings highlight the promising potential of combining physical and bioactive signals for the modulation of various cell types and the refinement of the multidimensional microenvironment, offering a novel strategy for diabetic wound healing.</p>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"47 ","pages":"64-82"},"PeriodicalIF":18.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772153/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.bioactmat.2025.01.004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells. Additionally, we incorporated a VEGF-mimicking peptide to further reinforce angiogenesis, a pivotal phase that interlocks with immune regulation, neurogenesis, and tissue regeneration, ultimately contributing to optimized inter-microenvironmental crosstalk. In vivo studies validated that the anisotropic bioactive nanofiber hydrogel effectively accelerated diabetic wound healing by harnessing the triadic synergy of the immune-angiogenic-neurogenic microenvironments. Our findings highlight the promising potential of combining physical and bioactive signals for the modulation of various cell types and the refinement of the multidimensional microenvironment, offering a novel strategy for diabetic wound healing.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.