Ursula Burger-Klepp, Mathias Maleczek, Robin Ristl, Bettina Kroyer, Marcus Raudner, Claus G Krenn, Roman Ullrich
{"title":"Using a clinical decision support system to reduce excess driving pressure: the ALARM trial.","authors":"Ursula Burger-Klepp, Mathias Maleczek, Robin Ristl, Bettina Kroyer, Marcus Raudner, Claus G Krenn, Roman Ullrich","doi":"10.1186/s12916-025-03898-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients at need for ventilation often are at risk of acute respiratory distress syndrome (ARDS). Although lung-protective ventilation strategies, including low driving pressure settings, are well known to improve outcomes, clinical practice often diverges from these strategies. A clinical decision support (CDS) system can improve adherence to current guidelines; moreover, the potential of a CDS to enhance adherence can possibly be further increased by combination with a nudge type intervention.</p><p><strong>Methods: </strong>A prospective cohort trial was conducted in patients at risk of ARDS admitted to an intensive care unit (ICU). Patients were assigned to control or intervention by their date of admission: First, the control group was included without changing anything in clinical practice. Next, the CDS was activated showing an alert in the patient data management system if driving pressure exceeded recommended values; additionally, data on the performance of the wards were sent to the healthcare professionals as the nudge intervention. The main hypothesis was that this combined intervention would lead to a significant decrease in excess driving pressure.</p><p><strong>Results: </strong>The 472 included patients (230 in the control group and 242 in the intervention group) consisted of 33% females. The median age was 64 years; median Sequential Organ Failure Assessment score was 8. There was a significant reduction in excess driving pressure in the augmented ventilation modes (0.28 ± 0.67 mbar vs. 0.14 ± 0.45 mbar, p = 0.012) but not the controlled mode (0.37 ± 0.83 mbar vs. 0.32 ± 0.8 mbar, p = 0.53). However, there was no significant difference between groups in mechanical power, the number of ventilator-free days, or the percentage of patients showing progression to ARDS. Although there was no difference in progression to ARDS, 28-day mortality was higher in the intervention group. Notably, the mean overall driving pressure across both groups was low (12.02 mbar ± 2.77).</p><p><strong>Conclusions: </strong>In a population at risk of ARDS, a combined intervention of a clinical decision support system and a nudge intervention was shown to reduce the excessive driving pressure above 15 mbar in augmented but not in controlled modes of ventilation.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"52"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776331/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-03898-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Patients at need for ventilation often are at risk of acute respiratory distress syndrome (ARDS). Although lung-protective ventilation strategies, including low driving pressure settings, are well known to improve outcomes, clinical practice often diverges from these strategies. A clinical decision support (CDS) system can improve adherence to current guidelines; moreover, the potential of a CDS to enhance adherence can possibly be further increased by combination with a nudge type intervention.
Methods: A prospective cohort trial was conducted in patients at risk of ARDS admitted to an intensive care unit (ICU). Patients were assigned to control or intervention by their date of admission: First, the control group was included without changing anything in clinical practice. Next, the CDS was activated showing an alert in the patient data management system if driving pressure exceeded recommended values; additionally, data on the performance of the wards were sent to the healthcare professionals as the nudge intervention. The main hypothesis was that this combined intervention would lead to a significant decrease in excess driving pressure.
Results: The 472 included patients (230 in the control group and 242 in the intervention group) consisted of 33% females. The median age was 64 years; median Sequential Organ Failure Assessment score was 8. There was a significant reduction in excess driving pressure in the augmented ventilation modes (0.28 ± 0.67 mbar vs. 0.14 ± 0.45 mbar, p = 0.012) but not the controlled mode (0.37 ± 0.83 mbar vs. 0.32 ± 0.8 mbar, p = 0.53). However, there was no significant difference between groups in mechanical power, the number of ventilator-free days, or the percentage of patients showing progression to ARDS. Although there was no difference in progression to ARDS, 28-day mortality was higher in the intervention group. Notably, the mean overall driving pressure across both groups was low (12.02 mbar ± 2.77).
Conclusions: In a population at risk of ARDS, a combined intervention of a clinical decision support system and a nudge intervention was shown to reduce the excessive driving pressure above 15 mbar in augmented but not in controlled modes of ventilation.
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.