MOTS-c Impact on Muscle Cell Differentiation and Metabolism Across Fiber Types.

IF 2.5 Q3 CELL BIOLOGY Cellular Physiology and Biochemistry Pub Date : 2025-01-21 DOI:10.33594/000000755
Natalia Leciejewska, Ewa Pruszyńska-Oszmałek, Paweł Kołodziejski, Dawid Szczepankiewicz, Leszek Nogowski, Maciej Sassek
{"title":"MOTS-c Impact on Muscle Cell Differentiation and Metabolism Across Fiber Types.","authors":"Natalia Leciejewska, Ewa Pruszyńska-Oszmałek, Paweł Kołodziejski, Dawid Szczepankiewicz, Leszek Nogowski, Maciej Sassek","doi":"10.33594/000000755","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>MOTS-c belongs to a group of mitochondrial peptides involved in metabolic processes in the body. This peptide has garnered increasing attention since its discovery in 2015 because of its potential to ameliorate metabolic parameters in animals with diabetes or insulin resistance. MOTS-c is involved in muscle metabolism; however, little is known about its role in fiber differentiation.</p><p><strong>Methods: </strong>We conducted a study to explore the effect of MOTS-c on cellular processes using the C2C12 and L6 cell lines, representing different metabolic types of muscle fibers. The research methods were real-time PCR, Western blot, and lipid accumulation measurement.</p><p><strong>Results: </strong>Notably, our investigations revealed that MOTS-c increased the survival of C2C12 cells at doses of 10 and 100 nM (p<0.01) and stimulated the phosphorylation of extracellular signal-regulated kinase within 5 min of incubation (p<0.05). Remarkably, these effects were not observed in L6 cells; however, both cell lines showed a reduced rate of proliferation. Furthermore, MOTS-c promotes the differentiation of C2C12 cells by increasing the expression of muscle regulatory factors, but it does not produce such an effect in L6 cells. Additionally, cells were treated with physiological concentrations of free fatty acids and MOTS-c, unveiling an augmentation in lipid accumulation observed in L6 cells and a decrease in lipid accumulation in C2C12 cells.</p><p><strong>Conclusion: </strong>In conclusion, our findings have suggested a diverse response to MOTS-c depending on the type of muscle fibers, particularly in the domains of survival, cell differentiation, and lipid accumulation.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 1","pages":"34-46"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aims: MOTS-c belongs to a group of mitochondrial peptides involved in metabolic processes in the body. This peptide has garnered increasing attention since its discovery in 2015 because of its potential to ameliorate metabolic parameters in animals with diabetes or insulin resistance. MOTS-c is involved in muscle metabolism; however, little is known about its role in fiber differentiation.

Methods: We conducted a study to explore the effect of MOTS-c on cellular processes using the C2C12 and L6 cell lines, representing different metabolic types of muscle fibers. The research methods were real-time PCR, Western blot, and lipid accumulation measurement.

Results: Notably, our investigations revealed that MOTS-c increased the survival of C2C12 cells at doses of 10 and 100 nM (p<0.01) and stimulated the phosphorylation of extracellular signal-regulated kinase within 5 min of incubation (p<0.05). Remarkably, these effects were not observed in L6 cells; however, both cell lines showed a reduced rate of proliferation. Furthermore, MOTS-c promotes the differentiation of C2C12 cells by increasing the expression of muscle regulatory factors, but it does not produce such an effect in L6 cells. Additionally, cells were treated with physiological concentrations of free fatty acids and MOTS-c, unveiling an augmentation in lipid accumulation observed in L6 cells and a decrease in lipid accumulation in C2C12 cells.

Conclusion: In conclusion, our findings have suggested a diverse response to MOTS-c depending on the type of muscle fibers, particularly in the domains of survival, cell differentiation, and lipid accumulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
86
审稿时长
1 months
期刊介绍: Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.
期刊最新文献
MOTS-c Impact on Muscle Cell Differentiation and Metabolism Across Fiber Types. Unraveling the Connection Between Ion Channels and Pancreatic Stellate Cell Activation. Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer. Bone Marrow Mesenchymal Stem Cells Promote Repairing the Bruised Tissue via Regulating mRNA Expression of Molecular Biomarkers and the Apoptotic Rate. Inflammatory Pathways of Sulfonamide Diuretics: Insights into SLC12A Cl- Symporters and Additional Targets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1