RetroFun-RVS: A Retrospective Family-Based Framework for Rare Variant Analysis Incorporating Functional Annotations.

IF 1.7 4区 医学 Q3 GENETICS & HEREDITY Genetic Epidemiology Pub Date : 2025-03-01 DOI:10.1002/gepi.70001
Loïc Mangnier, Ingo Ruczinski, Jasmin Ricard, Claudia Moreau, Simon Girard, Michel Maziade, Alexandre Bureau
{"title":"RetroFun-RVS: A Retrospective Family-Based Framework for Rare Variant Analysis Incorporating Functional Annotations.","authors":"Loïc Mangnier, Ingo Ruczinski, Jasmin Ricard, Claudia Moreau, Simon Girard, Michel Maziade, Alexandre Bureau","doi":"10.1002/gepi.70001","DOIUrl":null,"url":null,"abstract":"<p><p>A large proportion of genetic variations involved in complex diseases are rare and located within noncoding regions, making the interpretation of underlying biological mechanisms a daunting task. Although technical and methodological progress has been made to annotate the genome, current disease-rare-variant association tests incorporating such annotations suffer from two major limitations. First, they are generally restricted to case-control designs of unrelated individuals, which often require tens or hundreds of thousands of individuals to achieve sufficient power. Second, they were not evaluated with region-based annotations needed to interpret the causal regulatory mechanisms. In this work, we propose RetroFun-RVS, a new retrospective family-based score test, incorporating functional annotations. A critical feature of the proposed method is to aggregate genotypes to compare against rare variant-sharing expectations among affected family members. Through extensive simulations, we have demonstrated that RetroFun-RVS integrating networks based on 3D genome contacts as functional annotations reach greater power over the region-wide test, other strategies to include subregions and competing methods. Also, the proposed framework shows robustness to non-informative annotations, maintaining its power when causal variants are spread across regions. Asymptotic p-values are susceptible to Type I error inflation when the number of families with rare variants is small, and a bootstrap procedure is recommended in these instances. Application of RetroFun-RVS is illustrated on whole genome sequence in the Eastern Quebec Schizophrenia and Bipolar Disorder Kindred Study with networks constructed from 3D contacts and epigenetic data on neurons. In summary, the integration of functional annotations corresponding to regions or networks with transcriptional impacts in rare variant tests appears promising to highlight regulatory mechanisms involved in complex diseases.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 2","pages":"e70001"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/gepi.70001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

A large proportion of genetic variations involved in complex diseases are rare and located within noncoding regions, making the interpretation of underlying biological mechanisms a daunting task. Although technical and methodological progress has been made to annotate the genome, current disease-rare-variant association tests incorporating such annotations suffer from two major limitations. First, they are generally restricted to case-control designs of unrelated individuals, which often require tens or hundreds of thousands of individuals to achieve sufficient power. Second, they were not evaluated with region-based annotations needed to interpret the causal regulatory mechanisms. In this work, we propose RetroFun-RVS, a new retrospective family-based score test, incorporating functional annotations. A critical feature of the proposed method is to aggregate genotypes to compare against rare variant-sharing expectations among affected family members. Through extensive simulations, we have demonstrated that RetroFun-RVS integrating networks based on 3D genome contacts as functional annotations reach greater power over the region-wide test, other strategies to include subregions and competing methods. Also, the proposed framework shows robustness to non-informative annotations, maintaining its power when causal variants are spread across regions. Asymptotic p-values are susceptible to Type I error inflation when the number of families with rare variants is small, and a bootstrap procedure is recommended in these instances. Application of RetroFun-RVS is illustrated on whole genome sequence in the Eastern Quebec Schizophrenia and Bipolar Disorder Kindred Study with networks constructed from 3D contacts and epigenetic data on neurons. In summary, the integration of functional annotations corresponding to regions or networks with transcriptional impacts in rare variant tests appears promising to highlight regulatory mechanisms involved in complex diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetic Epidemiology
Genetic Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.40
自引率
9.50%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations. Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.
期刊最新文献
RetroFun-RVS: A Retrospective Family-Based Framework for Rare Variant Analysis Incorporating Functional Annotations. Reference-Based Standardization Approach Stabilizing Small Batch Risk Prediction via Polygenic Score. Genetic Associations of Persistent Opioid Use After Surgery Point to OPRM1 but Not Other Opioid-Related Loci as the Main Driver of Opioid Use Disorder. Bayesian Effect Size Ranking to Prioritise Genetic Risk Variants in Common Diseases for Follow-Up Studies. Using Family History Data to Improve the Power of Association Studies: Application to Cancer in UK Biobank.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1