{"title":"Reference-Based Standardization Approach Stabilizing Small Batch Risk Prediction via Polygenic Score","authors":"Yoichi Sutoh, Tsuyoshi Hachiya, Yayoi Otsuka-Yamasaki, Tomoharu Tokutomi, Akiko Yoshida, Yuka Kotozaki, Shohei Komaki, Shiori Minabe, Hideki Ohmomo, Kozo Tanno, Akimune Fukushima, Makoto Sasaki, Atsushi Shimizu","doi":"10.1002/gepi.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The polygenic score (PGS) holds promise for motivating preventive behavioral changes. However, no clinically validated standardization methodology currently exists. Here, we demonstrate the efficacy of a “reference-based” approach for standardization. This method uses the PGS distribution in the general population as a reference for normalization and percentile determination; however, it has not been validated. We investigated three potential influences on PGS computation: (1) the size of the reference population, (2) biases associated with different genotyping platforms, and (3) inclusion of kinship ties within the reference group. Our results indicate that the reference size affects the bootstrap estimate of standard error for PGS percentiles, peaking around the 50th percentile and diminishing at extreme percentiles (1st or 100th). Discrepancies between genotyping platforms, such as different microarrays and whole-genome sequencing, resulted in deviations in PGS (<i>p</i> < 0.05 in Kolmogorov–Smirnov test). However, these deviations were reduced to a nonsignificant level using shared genetic variants in the calculations when the ancestry of the samples and reference were matched. This approach recovered approximately 9.6% of the positive predictive value of PGS by naïve genotype. Our results provide fundamental insights for establishing clinical guidelines for implementing PGS to communicate reliable risks to individuals.</p>\n </div>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.70002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The polygenic score (PGS) holds promise for motivating preventive behavioral changes. However, no clinically validated standardization methodology currently exists. Here, we demonstrate the efficacy of a “reference-based” approach for standardization. This method uses the PGS distribution in the general population as a reference for normalization and percentile determination; however, it has not been validated. We investigated three potential influences on PGS computation: (1) the size of the reference population, (2) biases associated with different genotyping platforms, and (3) inclusion of kinship ties within the reference group. Our results indicate that the reference size affects the bootstrap estimate of standard error for PGS percentiles, peaking around the 50th percentile and diminishing at extreme percentiles (1st or 100th). Discrepancies between genotyping platforms, such as different microarrays and whole-genome sequencing, resulted in deviations in PGS (p < 0.05 in Kolmogorov–Smirnov test). However, these deviations were reduced to a nonsignificant level using shared genetic variants in the calculations when the ancestry of the samples and reference were matched. This approach recovered approximately 9.6% of the positive predictive value of PGS by naïve genotype. Our results provide fundamental insights for establishing clinical guidelines for implementing PGS to communicate reliable risks to individuals.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.