Roël M Vrooman, Monica van den Berg, Gabriel Desrosiers-Gregoire, Wessel A van Engelenburg, Marie E Galteau, Sung-Ho Lee, Andor Veltien, David A Barrière, Diana Cash, M Mallar Chakravarty, Gabriel A Devenyi, Alessandro Gozzi, Olli Gröhn, Andreas Hess, Judith R Homberg, Ileana O Jelescu, Georgios A Keliris, Tom Scheenen, Yen-Yu Ian Shih, Marleen Verhoye, Claire Wary, Marcel Zwiers, Joanes Grandjean
{"title":"fMRI data acquisition and analysis for task-free, anesthetized rats.","authors":"Roël M Vrooman, Monica van den Berg, Gabriel Desrosiers-Gregoire, Wessel A van Engelenburg, Marie E Galteau, Sung-Ho Lee, Andor Veltien, David A Barrière, Diana Cash, M Mallar Chakravarty, Gabriel A Devenyi, Alessandro Gozzi, Olli Gröhn, Andreas Hess, Judith R Homberg, Ileana O Jelescu, Georgios A Keliris, Tom Scheenen, Yen-Yu Ian Shih, Marleen Verhoye, Claire Wary, Marcel Zwiers, Joanes Grandjean","doi":"10.1038/s41596-024-01110-y","DOIUrl":null,"url":null,"abstract":"<p><p>Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies. Here, we outline a procedure for the acquisition of fMRI datasets in rats and describe animal handling, MRI sequence parameters, data conversion, preprocessing, quality control and data analysis. The procedure is designed to be generalizable across laboratories, has been validated by using datasets across 20 research centers with different scanners and field strengths ranging from 4.7 to 17.2 T and can be used in studies in which it is useful to compare functional connectivity measures across an extensive range of datasets. The MRI procedure requires 1 h per rat to complete and can be carried out by users with limited expertise in rat handling, MRI and data processing.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01110-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies. Here, we outline a procedure for the acquisition of fMRI datasets in rats and describe animal handling, MRI sequence parameters, data conversion, preprocessing, quality control and data analysis. The procedure is designed to be generalizable across laboratories, has been validated by using datasets across 20 research centers with different scanners and field strengths ranging from 4.7 to 17.2 T and can be used in studies in which it is useful to compare functional connectivity measures across an extensive range of datasets. The MRI procedure requires 1 h per rat to complete and can be carried out by users with limited expertise in rat handling, MRI and data processing.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.