A transplantation study in the high-altitude ecosystem of Ladakh suggests site-specific microenvironment is key for physiological adaptation than altitude

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2025-01-23 DOI:10.1016/j.plaphy.2025.109532
Villayat Ali , Dhiraj Vyas
{"title":"A transplantation study in the high-altitude ecosystem of Ladakh suggests site-specific microenvironment is key for physiological adaptation than altitude","authors":"Villayat Ali ,&nbsp;Dhiraj Vyas","doi":"10.1016/j.plaphy.2025.109532","DOIUrl":null,"url":null,"abstract":"<div><div>Transplantation experiments conducted in high altitude ecosystems are rising as key strategy to examine the response of individual plant transplanted across distinct elevations. However, plant physiological and biochemical performance in response to changes in abiotic factors across different species and mountain ranges is still lacking. So in the present study, we have made an attempt to link the physiological performance with that of altitudinal gradient in Ladakh by transplanting <em>Lepidium latifolium</em> at four different altitudinal sites. The plant was found to maintain photosynthesis even at high altitudes by modulating photochemical efficiency of photosystem II. Various physiological processes including performance index (PI<sub>ABS</sub>), increase in energy fluxes, closing of the reaction centres and decrease in chlorophyll content play a crucial role in the adaptation of this plant. The efficient and dynamic non-photochemical quenching (NPQ) involving carotenoids particularly zeaxanthin mediated dissipation of excess light energy at high altitudinal sites of Ladakh led the plant to withstand with extremely strong light radiation. As a photoprotective mechanism, decreases in chlorophyll content and increase in carotenoids could lead to a reduction in the absorption of high light energy and avoid photo damage to the chloroplasts. Higher content of redox metabolites such as GSH, ASC, GSH/GSSG ratio and ASC/DHA ratio in plants transplanted at high altitudinal sites further suggests the resilience ability of <em>Lepidium latifolium</em> against harsh environmental stresses. Furthermore, increase in glucosinolate content in plants transplanted at high altitudes suggests the involvement of GLS in the establishment of <em>Lepidium latifolium</em> in Ladakh. Overall, no specific altitudinal trend was observed in the present study indicating the adaptation strategy of <em>Lepidium latifolium</em> to different altitudinal sites can be attributed to the combined effects of multiple environmental factors/microenvironment.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"Article 109532"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825000609","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transplantation experiments conducted in high altitude ecosystems are rising as key strategy to examine the response of individual plant transplanted across distinct elevations. However, plant physiological and biochemical performance in response to changes in abiotic factors across different species and mountain ranges is still lacking. So in the present study, we have made an attempt to link the physiological performance with that of altitudinal gradient in Ladakh by transplanting Lepidium latifolium at four different altitudinal sites. The plant was found to maintain photosynthesis even at high altitudes by modulating photochemical efficiency of photosystem II. Various physiological processes including performance index (PIABS), increase in energy fluxes, closing of the reaction centres and decrease in chlorophyll content play a crucial role in the adaptation of this plant. The efficient and dynamic non-photochemical quenching (NPQ) involving carotenoids particularly zeaxanthin mediated dissipation of excess light energy at high altitudinal sites of Ladakh led the plant to withstand with extremely strong light radiation. As a photoprotective mechanism, decreases in chlorophyll content and increase in carotenoids could lead to a reduction in the absorption of high light energy and avoid photo damage to the chloroplasts. Higher content of redox metabolites such as GSH, ASC, GSH/GSSG ratio and ASC/DHA ratio in plants transplanted at high altitudinal sites further suggests the resilience ability of Lepidium latifolium against harsh environmental stresses. Furthermore, increase in glucosinolate content in plants transplanted at high altitudes suggests the involvement of GLS in the establishment of Lepidium latifolium in Ladakh. Overall, no specific altitudinal trend was observed in the present study indicating the adaptation strategy of Lepidium latifolium to different altitudinal sites can be attributed to the combined effects of multiple environmental factors/microenvironment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Corrigendum to "Lily (Lilium spp.) LhERF061 suppresses anthocyanin biosynthesis by inhibiting LhMYBSPLATTER and LhDFR expression and interacting with LhMYBSPLATTER" [2024 Nov 22:219:109325]. Overexpression of the patatin-related phospholipase A gene, PgpPLAIIIβ, in ginseng adventitious roots reduces lignin and ginsenoside content while increasing fatty acid content New insights into the responses of phosphite, as a plant biostimulator, on PSII photochemistry, gas exchange, redox state and antioxidant system in maize plants under boron toxicity Physiological mechanisms of heavy metal detoxification in tomato plants mediated by endophytic fungi under nickel and cadmium stress Iron deficiency and toxicity trigger divergent metabolic responses and adaptive plasticity in Ulmus pumila: Insights from integrated transcriptomic and metabolomic analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1