Physiological mechanisms of heavy metal detoxification in tomato plants mediated by endophytic fungi under nickel and cadmium stress

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2025-02-03 DOI:10.1016/j.plaphy.2025.109589
Ibrahim Khan , Sajjad Asaf , Sang-Mo Kang , In-Jung Lee
{"title":"Physiological mechanisms of heavy metal detoxification in tomato plants mediated by endophytic fungi under nickel and cadmium stress","authors":"Ibrahim Khan ,&nbsp;Sajjad Asaf ,&nbsp;Sang-Mo Kang ,&nbsp;In-Jung Lee","doi":"10.1016/j.plaphy.2025.109589","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy metal (HM) pollution in agricultural soils threatens plant growth and food security, underscoring the urgency for sustainable and eco-friendly solutions. This study investigates the potential of endophytic fungi, <em>Fusarium proliferatum</em> SL3 and <em>Aspergillus terreus</em> MGRF2, in mitigating nickel (Ni) and cadmium (Cd) stress in <em>Solanum lycopersicum</em> (tomato). These fungi were evaluated for their plant growth-promoting traits, including the production of indole-3-acetic acid (IAA) and siderophores, offering a sustainable strategy for alleviating HM toxicity. Inoculation with SL3 and MGRF2 significantly reduced metal accumulation in plant tissues by enhancing metal immobilization and modifying root architecture. Microscopic analysis revealed that fungi protected root epidermal cells from Ni- and Cd-induced damage, preserving cellular integrity and preventing plasmolysis. Fungal-treated plants exhibited improved growth and biomass, with SL3 demonstrating superior Cd stress mitigation and MGRF2 excelling under Ni stress. Photosynthetic pigment levels, including chlorophyll-a and carotenoids, were restored, highlighting the role of fungi in maintaining photosynthetic efficiency. Antioxidant activity was also modulated, as reduced glutathione (GSH) levels and increased flavonoid production were observed, contributing to enhanced oxidative stress management. Hormonal profiling revealed that fungal inoculation balanced stress-induced hormonal disruptions, with lower abscisic acid (ABA) levels and improved salicylic acid (SA) and gibberellic acid (GA) pathways. These changes facilitated better stress adaptation, enhanced nutrient uptake, and improved physiological performance. qRT-PCR analysis further revealed differential gene expression patterns, while antioxidant enzyme activity strengthened the plants’ defense against HM-induced oxidative damage. Multivariate analyses highlighted shoot and root traits as critical indicators of resilience, with fungal inoculation driving substantial improvements. These findings demonstrate the potential of SL3 and MGRF2 as eco-friendly bioinoculants, offering a sustainable and cost-effective approach to reducing HMs toxicity in contaminated soils while enhancing crop productivity. This work highlights the promising role of plant-microbe interactions in advancing sustainable agriculture and addressing the challenges posed by heavy metal pollution.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"221 ","pages":"Article 109589"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825001172","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal (HM) pollution in agricultural soils threatens plant growth and food security, underscoring the urgency for sustainable and eco-friendly solutions. This study investigates the potential of endophytic fungi, Fusarium proliferatum SL3 and Aspergillus terreus MGRF2, in mitigating nickel (Ni) and cadmium (Cd) stress in Solanum lycopersicum (tomato). These fungi were evaluated for their plant growth-promoting traits, including the production of indole-3-acetic acid (IAA) and siderophores, offering a sustainable strategy for alleviating HM toxicity. Inoculation with SL3 and MGRF2 significantly reduced metal accumulation in plant tissues by enhancing metal immobilization and modifying root architecture. Microscopic analysis revealed that fungi protected root epidermal cells from Ni- and Cd-induced damage, preserving cellular integrity and preventing plasmolysis. Fungal-treated plants exhibited improved growth and biomass, with SL3 demonstrating superior Cd stress mitigation and MGRF2 excelling under Ni stress. Photosynthetic pigment levels, including chlorophyll-a and carotenoids, were restored, highlighting the role of fungi in maintaining photosynthetic efficiency. Antioxidant activity was also modulated, as reduced glutathione (GSH) levels and increased flavonoid production were observed, contributing to enhanced oxidative stress management. Hormonal profiling revealed that fungal inoculation balanced stress-induced hormonal disruptions, with lower abscisic acid (ABA) levels and improved salicylic acid (SA) and gibberellic acid (GA) pathways. These changes facilitated better stress adaptation, enhanced nutrient uptake, and improved physiological performance. qRT-PCR analysis further revealed differential gene expression patterns, while antioxidant enzyme activity strengthened the plants’ defense against HM-induced oxidative damage. Multivariate analyses highlighted shoot and root traits as critical indicators of resilience, with fungal inoculation driving substantial improvements. These findings demonstrate the potential of SL3 and MGRF2 as eco-friendly bioinoculants, offering a sustainable and cost-effective approach to reducing HMs toxicity in contaminated soils while enhancing crop productivity. This work highlights the promising role of plant-microbe interactions in advancing sustainable agriculture and addressing the challenges posed by heavy metal pollution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Corrigendum to "Lily (Lilium spp.) LhERF061 suppresses anthocyanin biosynthesis by inhibiting LhMYBSPLATTER and LhDFR expression and interacting with LhMYBSPLATTER" [2024 Nov 22:219:109325]. Overexpression of the patatin-related phospholipase A gene, PgpPLAIIIβ, in ginseng adventitious roots reduces lignin and ginsenoside content while increasing fatty acid content New insights into the responses of phosphite, as a plant biostimulator, on PSII photochemistry, gas exchange, redox state and antioxidant system in maize plants under boron toxicity Physiological mechanisms of heavy metal detoxification in tomato plants mediated by endophytic fungi under nickel and cadmium stress Iron deficiency and toxicity trigger divergent metabolic responses and adaptive plasticity in Ulmus pumila: Insights from integrated transcriptomic and metabolomic analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1