Prediction of gene expression using histone modification patterns extracted by Particle Swarm Optimization.

Niels Benjamin Paul, Jonas Chanrithy Wolber, Malte Lennart Sahrhage, Tim Beißbarth, Martin Haubrock
{"title":"Prediction of gene expression using histone modification patterns extracted by Particle Swarm Optimization.","authors":"Niels Benjamin Paul, Jonas Chanrithy Wolber, Malte Lennart Sahrhage, Tim Beißbarth, Martin Haubrock","doi":"10.1093/bioinformatics/btaf033","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription. In previous studies, trained models were either hardly explainable or the models were trained solely on the abundance of histone modifications. Based on other studies, which used histone modification patterns, rather than their abundance, to identify potential regulatory elements, we hypothesize the histone modification pattern in a gene's promoter to be more predictive for gene expression. We used an optimization algorithm to extract predictive histone modification profiles.</p><p><strong>Results: </strong>Our algorithm called PatternChrome achieved an average area under curve (AUC) score of 0.9029 over 56 samples for binary classification, outperforming all previous algorithms for the same task. We explained the models decisions to deduce the effect of specific features, certain histone modifications or promoter positions on transcription regulation. Although the predictive histone modification patterns were extracted for each sample separately, they can be used to predict gene expression in other samples, implying that the created patterns are largely generalizable. Interestingly, the impact of histone modifications on gene regulation appears predominantly indifferent to cellular specificity. Through explanation of the classifier's decisions, we substantiate established literature knowledge while concurrently revealing novel insights into the intricate landscape of transcriptional regulation via histone modification.</p><p><strong>Availability and implementation: </strong>The code for the PatternChrome algorithm, the scripts for the analyses and the required data can be found at (https://gitlab.gwdg.de/MedBioinf/generegulation/patternchrome).</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription. In previous studies, trained models were either hardly explainable or the models were trained solely on the abundance of histone modifications. Based on other studies, which used histone modification patterns, rather than their abundance, to identify potential regulatory elements, we hypothesize the histone modification pattern in a gene's promoter to be more predictive for gene expression. We used an optimization algorithm to extract predictive histone modification profiles.

Results: Our algorithm called PatternChrome achieved an average area under curve (AUC) score of 0.9029 over 56 samples for binary classification, outperforming all previous algorithms for the same task. We explained the models decisions to deduce the effect of specific features, certain histone modifications or promoter positions on transcription regulation. Although the predictive histone modification patterns were extracted for each sample separately, they can be used to predict gene expression in other samples, implying that the created patterns are largely generalizable. Interestingly, the impact of histone modifications on gene regulation appears predominantly indifferent to cellular specificity. Through explanation of the classifier's decisions, we substantiate established literature knowledge while concurrently revealing novel insights into the intricate landscape of transcriptional regulation via histone modification.

Availability and implementation: The code for the PatternChrome algorithm, the scripts for the analyses and the required data can be found at (https://gitlab.gwdg.de/MedBioinf/generegulation/patternchrome).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1