Enhanced O-glycosylation site prediction using explainable machine learning technique with spatial local environment.

Seokyoung Hong, Krishna Gopal Chattaraj, Jing Guo, Bernhardt L Trout, Richard D Braatz
{"title":"Enhanced O-glycosylation site prediction using explainable machine learning technique with spatial local environment.","authors":"Seokyoung Hong, Krishna Gopal Chattaraj, Jing Guo, Bernhardt L Trout, Richard D Braatz","doi":"10.1093/bioinformatics/btaf034","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The accurate prediction of O-GlcNAcylation sites is crucial for understanding disease mechanisms and developing effective treatments. Previous machine learning (ML) models primarily relied on primary or secondary protein structural and related properties, which have limitations in capturing the spatial interactions of neighboring amino acids. This study introduces local environmental features as a novel approach that incorporates three-dimensional spatial information, significantly improving model performance by considering the spatial context around the target site. Additionally, we utilize sparse recurrent neural networks to effectively capture sequential nature of the proteins and to identify key factors influencing O-GlcNAcylation as an explainable ML model.</p><p><strong>Results: </strong>Our findings demonstrate the effectiveness of our proposed features with the model achieving an F1 score of 28.3%, as well as feature selection capability with the model using only the top 20% of features achieving the highest F1 score of 32.02%, a 1.4-fold improvement over existing PTM models. Statistical analysis of the top 20 features confirmed their consistency with literature. This method not only boosts prediction accuracy but also paves the way for further research in understanding and targeting O-GlcNAcylation.</p><p><strong>Availability and implementation: </strong>The entire code, data, features used in this study are available in the GitHub repository: https://github.com/pseokyoung/o-glcnac-prediction.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The accurate prediction of O-GlcNAcylation sites is crucial for understanding disease mechanisms and developing effective treatments. Previous machine learning (ML) models primarily relied on primary or secondary protein structural and related properties, which have limitations in capturing the spatial interactions of neighboring amino acids. This study introduces local environmental features as a novel approach that incorporates three-dimensional spatial information, significantly improving model performance by considering the spatial context around the target site. Additionally, we utilize sparse recurrent neural networks to effectively capture sequential nature of the proteins and to identify key factors influencing O-GlcNAcylation as an explainable ML model.

Results: Our findings demonstrate the effectiveness of our proposed features with the model achieving an F1 score of 28.3%, as well as feature selection capability with the model using only the top 20% of features achieving the highest F1 score of 32.02%, a 1.4-fold improvement over existing PTM models. Statistical analysis of the top 20 features confirmed their consistency with literature. This method not only boosts prediction accuracy but also paves the way for further research in understanding and targeting O-GlcNAcylation.

Availability and implementation: The entire code, data, features used in this study are available in the GitHub repository: https://github.com/pseokyoung/o-glcnac-prediction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1