Enhancing solar thermoelectric generator performance using metal oxide layer absorbers under concentrated solar radiation

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS Case Studies in Thermal Engineering Pub Date : 2025-01-29 DOI:10.1016/j.csite.2025.105808
Abdelkader Rjafallah, Daniel Tudor Cotfas, Petru Adrian Cotfas
{"title":"Enhancing solar thermoelectric generator performance using metal oxide layer absorbers under concentrated solar radiation","authors":"Abdelkader Rjafallah, Daniel Tudor Cotfas, Petru Adrian Cotfas","doi":"10.1016/j.csite.2025.105808","DOIUrl":null,"url":null,"abstract":"Solar Thermoelectric Generators (STEGs) hold promise for sustainable energy, with ongoing efforts to enhance efficiency through advanced thermal absorbers. This study evaluates the performance of STEGs using graphite sheet (GS) and metal oxides layer (MOL) absorbers under solar concentrations of 20, 40, 60, and 80 suns. Performance metrics, including short-circuit current (Isc), open-circuit voltage (Voc), maximum power output (Pmax), and efficiency (η), were measured experimentally using the KIRAN-42 solar simulator and compared with COMSOL Multiphysics simulations. The MOL-based STEG outperformed the GS-based counterpart, achieving Pmax (η) values of 0.559 W (1.75 %), 1.818 W (2.84 %), 3.071 W (3.2 %), and 3.762 W (2.94 %) at 20, 40, 60, and 80 suns, respectively, compared to 0.308 W (0.96 %), 1.120 W (1.75 %), 1.984 W (2.1 %), and 2.670 W (2.1 %) for the GS-based STEG. Experimental and simulation discrepancies were minimal at lower concentrations (1.9 % and 6.4 % at 20 suns) but increased at 80 suns (32.4 % and 41.7 %). Both approaches showed strong linear correlations between Pmax and solar concentration (R<ce:sup loc=\"post\">2</ce:sup> &gt; 0.98). Low RMSE values (0.45 for GS, 0.81 for MOL) further validated the models. This study underscores the superior performance of MOL absorbers and provides insights for optimizing STEG designs.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"53 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2025.105808","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar Thermoelectric Generators (STEGs) hold promise for sustainable energy, with ongoing efforts to enhance efficiency through advanced thermal absorbers. This study evaluates the performance of STEGs using graphite sheet (GS) and metal oxides layer (MOL) absorbers under solar concentrations of 20, 40, 60, and 80 suns. Performance metrics, including short-circuit current (Isc), open-circuit voltage (Voc), maximum power output (Pmax), and efficiency (η), were measured experimentally using the KIRAN-42 solar simulator and compared with COMSOL Multiphysics simulations. The MOL-based STEG outperformed the GS-based counterpart, achieving Pmax (η) values of 0.559 W (1.75 %), 1.818 W (2.84 %), 3.071 W (3.2 %), and 3.762 W (2.94 %) at 20, 40, 60, and 80 suns, respectively, compared to 0.308 W (0.96 %), 1.120 W (1.75 %), 1.984 W (2.1 %), and 2.670 W (2.1 %) for the GS-based STEG. Experimental and simulation discrepancies were minimal at lower concentrations (1.9 % and 6.4 % at 20 suns) but increased at 80 suns (32.4 % and 41.7 %). Both approaches showed strong linear correlations between Pmax and solar concentration (R2 > 0.98). Low RMSE values (0.45 for GS, 0.81 for MOL) further validated the models. This study underscores the superior performance of MOL absorbers and provides insights for optimizing STEG designs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
期刊最新文献
Enhancing solar thermoelectric generator performance using metal oxide layer absorbers under concentrated solar radiation Conversion of water hyacinth biomass to biofuel with TiO2 nanoparticle blending: Exergy and statistical analysis Performance evaluation of a lightweight acrylic flat plate collector with natural flow integration in a hybrid photovoltaic-thermal (PVT) system Study on thermal and physiological responses during summer while moving between academic buildings under different walking conditions Numerical study of the heat transfer characteristics of Helium-Air flow in PCHE with zigzag channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1